Struct syntax_pos::symbol::LocalInternedString [−][src]
pub struct LocalInternedString { /* fields omitted */ }Represents a string stored in the interner. Because the interner outlives any thread
which uses this type, we can safely treat string which points to interner data,
as an immortal string, as long as this type never crosses between threads.
Methods
impl LocalInternedString[src]
impl LocalInternedStringpub fn as_interned_str(self) -> InternedString[src]
pub fn as_interned_str(self) -> InternedStringMethods from Deref<Target = str>
pub const fn len(&self) -> usize1.0.0[src]
pub const fn len(&self) -> usizeReturns the length of self.
This length is in bytes, not chars or graphemes. In other words,
it may not be what a human considers the length of the string.
Examples
Basic usage:
let len = "foo".len(); assert_eq!(3, len); let len = "ƒoo".len(); // fancy f! assert_eq!(4, len);
pub const fn is_empty(&self) -> bool1.0.0[src]
pub const fn is_empty(&self) -> boolReturns true if self has a length of zero bytes.
Examples
Basic usage:
let s = ""; assert!(s.is_empty()); let s = "not empty"; assert!(!s.is_empty());
pub fn is_char_boundary(&self, index: usize) -> bool1.9.0[src]
pub fn is_char_boundary(&self, index: usize) -> boolChecks that index-th byte lies at the start and/or end of a
UTF-8 code point sequence.
The start and end of the string (when index == self.len()) are
considered to be
boundaries.
Returns false if index is greater than self.len().
Examples
let s = "Löwe 老虎 Léopard"; assert!(s.is_char_boundary(0)); // start of `老` assert!(s.is_char_boundary(6)); assert!(s.is_char_boundary(s.len())); // second byte of `ö` assert!(!s.is_char_boundary(2)); // third byte of `老` assert!(!s.is_char_boundary(8));
pub const fn as_bytes(&self) -> &[u8]1.0.0[src]
pub const fn as_bytes(&self) -> &[u8]Converts a string slice to a byte slice. To convert the byte slice back
into a string slice, use the str::from_utf8 function.
Examples
Basic usage:
let bytes = "bors".as_bytes(); assert_eq!(b"bors", bytes);
pub const fn as_ptr(&self) -> *const u81.0.0[src]
pub const fn as_ptr(&self) -> *const u8Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8. This pointer will be pointing to the first byte of the string
slice.
Examples
Basic usage:
let s = "Hello"; let ptr = s.as_ptr();
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>, 1.20.0[src]
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>, Returns a subslice of str.
This is the non-panicking alternative to indexing the str. Returns
None whenever equivalent indexing operation would panic.
Examples
let v = String::from("🗻∈🌏"); assert_eq!(Some("🗻"), v.get(0..4)); // indices not on UTF-8 sequence boundaries assert!(v.get(1..).is_none()); assert!(v.get(..8).is_none()); // out of bounds assert!(v.get(..42).is_none());
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>, 1.20.0[src]
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>, Returns a unchecked subslice of str.
This is the unchecked alternative to indexing the str.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must come before the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str type.
Examples
let v = "🗻∈🌏"; unsafe { assert_eq!("🗻", v.get_unchecked(0..4)); assert_eq!("∈", v.get_unchecked(4..7)); assert_eq!("🌏", v.get_unchecked(7..11)); }
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str1.0.0[src]
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &strCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str and Index.
This new slice goes from begin to end, including begin but
excluding end.
To get a mutable string slice instead, see the
slice_mut_unchecked method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
beginmust come beforeend.beginandendmust be byte positions within the string slice.beginandendmust lie on UTF-8 sequence boundaries.
Examples
Basic usage:
let s = "Löwe 老虎 Léopard"; unsafe { assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); } let s = "Hello, world!"; unsafe { assert_eq!("world", s.slice_unchecked(7, 12)); }
pub fn split_at(&self, mid: usize) -> (&str, &str)1.4.0[src]
pub fn split_at(&self, mid: usize) -> (&str, &str)Divide one string slice into two at an index.
The argument, mid, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
Panics
Panics if mid is not on a UTF-8 code point boundary, or if it is
beyond the last code point of the string slice.
Examples
Basic usage:
let s = "Per Martin-Löf"; let (first, last) = s.split_at(3); assert_eq!("Per", first); assert_eq!(" Martin-Löf", last);
pub fn chars(&self) -> Chars1.0.0[src]
pub fn chars(&self) -> CharsReturns an iterator over the chars of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns such an iterator.
It's important to remember that char represents a Unicode Scalar
Value, and may not match your idea of what a 'character' is. Iteration
over grapheme clusters may be what you actually want.
Examples
Basic usage:
let word = "goodbye"; let count = word.chars().count(); assert_eq!(7, count); let mut chars = word.chars(); assert_eq!(Some('g'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('d'), chars.next()); assert_eq!(Some('b'), chars.next()); assert_eq!(Some('y'), chars.next()); assert_eq!(Some('e'), chars.next()); assert_eq!(None, chars.next());
Remember, chars may not match your human intuition about characters:
let y = "y̆"; let mut chars = y.chars(); assert_eq!(Some('y'), chars.next()); // not 'y̆' assert_eq!(Some('\u{0306}'), chars.next()); assert_eq!(None, chars.next());
pub fn char_indices(&self) -> CharIndices1.0.0[src]
pub fn char_indices(&self) -> CharIndicesReturns an iterator over the chars of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns an iterator of both
these chars, as well as their byte positions.
The iterator yields tuples. The position is first, the char is
second.
Examples
Basic usage:
let word = "goodbye"; let count = word.char_indices().count(); assert_eq!(7, count); let mut char_indices = word.char_indices(); assert_eq!(Some((0, 'g')), char_indices.next()); assert_eq!(Some((1, 'o')), char_indices.next()); assert_eq!(Some((2, 'o')), char_indices.next()); assert_eq!(Some((3, 'd')), char_indices.next()); assert_eq!(Some((4, 'b')), char_indices.next()); assert_eq!(Some((5, 'y')), char_indices.next()); assert_eq!(Some((6, 'e')), char_indices.next()); assert_eq!(None, char_indices.next());
Remember, chars may not match your human intuition about characters:
let yes = "y̆es"; let mut char_indices = yes.char_indices(); assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') assert_eq!(Some((1, '\u{0306}')), char_indices.next()); // note the 3 here - the last character took up two bytes assert_eq!(Some((3, 'e')), char_indices.next()); assert_eq!(Some((4, 's')), char_indices.next()); assert_eq!(None, char_indices.next());
pub fn bytes(&self) -> Bytes1.0.0[src]
pub fn bytes(&self) -> BytesAn iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
Examples
Basic usage:
let mut bytes = "bors".bytes(); assert_eq!(Some(b'b'), bytes.next()); assert_eq!(Some(b'o'), bytes.next()); assert_eq!(Some(b'r'), bytes.next()); assert_eq!(Some(b's'), bytes.next()); assert_eq!(None, bytes.next());
pub fn split_whitespace(&self) -> SplitWhitespace1.1.0[src]
pub fn split_whitespace(&self) -> SplitWhitespaceSplit a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Examples
Basic usage:
let mut iter = "A few words".split_whitespace(); assert_eq!(Some("A"), iter.next()); assert_eq!(Some("few"), iter.next()); assert_eq!(Some("words"), iter.next()); assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); assert_eq!(Some("Mary"), iter.next()); assert_eq!(Some("had"), iter.next()); assert_eq!(Some("a"), iter.next()); assert_eq!(Some("little"), iter.next()); assert_eq!(Some("lamb"), iter.next()); assert_eq!(None, iter.next());
pub fn lines(&self) -> Lines1.0.0[src]
pub fn lines(&self) -> LinesAn iterator over the lines of a string, as string slices.
Lines are ended with either a newline (\n) or a carriage return with
a line feed (\r\n).
The final line ending is optional.
Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\n"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next());
The final line ending isn't required:
let text = "foo\nbar\n\r\nbaz"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next());
pub fn lines_any(&self) -> LinesAny1.0.0[src]
pub fn lines_any(&self) -> LinesAny: use lines() instead now
An iterator over the lines of a string.
pub fn encode_utf16(&self) -> EncodeUtf161.8.0[src]
pub fn encode_utf16(&self) -> EncodeUtf16Returns an iterator of u16 over the string encoded as UTF-16.
Examples
Basic usage:
let text = "Zażółć gęślą jaźń"; let utf8_len = text.len(); let utf16_len = text.encode_utf16().count(); assert!(utf16_len <= utf8_len);
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>, 1.0.0[src]
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>, Returns true if the given pattern matches a sub-slice of
this string slice.
Returns false if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.contains("nana")); assert!(!bananas.contains("apples"));
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>, 1.0.0[src]
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>, Returns true if the given pattern matches a prefix of this
string slice.
Returns false if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.starts_with("bana")); assert!(!bananas.starts_with("nana"));
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src]
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, Returns true if the given pattern matches a suffix of this
string slice.
Returns false if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.ends_with("anas")); assert!(!bananas.ends_with("nana"));
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>, 1.0.0[src]
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>, Returns the byte index of the first character of this string slice that matches the pattern.
Returns None if the pattern doesn't match.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.find('L'), Some(0)); assert_eq!(s.find('é'), Some(14)); assert_eq!(s.find("Léopard"), Some(13));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.find(char::is_whitespace), Some(5)); assert_eq!(s.find(char::is_lowercase), Some(1)); assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.find(x), None);
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src]
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, Returns the byte index of the last character of this string slice that matches the pattern.
Returns None if the pattern doesn't match.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind('L'), Some(13)); assert_eq!(s.rfind('é'), Some(14));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind(char::is_whitespace), Some(12)); assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.rfind(x), None);
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
P: Pattern<'a>, 1.0.0[src]
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
P: Pattern<'a>, An iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, or a closure that determines the
split.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); let v: Vec<&str> = "".split('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); assert_eq!(v, ["lion", "", "tiger", "leopard"]); let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); assert_eq!(v, ["lion", "tiger", "leopard"]); let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); assert_eq!(v, ["abc", "def", "ghi"]); let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); assert_eq!(v, ["lion", "tiger", "leopard"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string(); let d: Vec<_> = x.split('|').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string(); let d: Vec<_> = x.split('/').collect(); assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect(); assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect(); assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string(); let d: Vec<_> = x.split(' ').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace for this behavior.
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src]
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, or a closure that determines the
split.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the split method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); let v: Vec<&str> = "".rsplit('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); assert_eq!(v, ["leopard", "tiger", "", "lion"]); let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "def", "abc"]);
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
P: Pattern<'a>, 1.0.0[src]
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
P: Pattern<'a>, An iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, or a closure that determines the
split.
Equivalent to split, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator method can be used.
Examples
Basic usage:
let v: Vec<&str> = "A.B.".split_terminator('.').collect(); assert_eq!(v, ["A", "B"]); let v: Vec<&str> = "A..B..".split_terminator(".").collect(); assert_eq!(v, ["A", "", "B", ""]);
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src]
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over substrings of self, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a simple &str, char, or a closure that
determines the split.
Additional libraries might provide more complex patterns like
regular expressions.
Equivalent to split, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator method can be
used.
Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); assert_eq!(v, ["B", "A"]); let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); assert_eq!(v, ["", "B", "", "A"]);
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
P: Pattern<'a>, 1.0.0[src]
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
P: Pattern<'a>, An iterator over substrings of the given string slice, separated by a
pattern, restricted to returning at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, or a closure that determines the
split.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn method can be
used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); assert_eq!(v, ["Mary", "had", "a little lambda"]); let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); assert_eq!(v, ["lion", "", "tigerXleopard"]); let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); assert_eq!(v, ["abcXdef"]); let v: Vec<&str> = "".splitn(1, 'X').collect(); assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "defXghi"]);
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src]
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning
at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, or a closure that
determines the split.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); assert_eq!(v, ["lamb", "little", "Mary had a"]); let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); assert_eq!(v, ["leopard", "tiger", "lionX"]); let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "abc1def"]);
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
P: Pattern<'a>, 1.2.0[src]
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
P: Pattern<'a>, An iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str, char, or a closure that
determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); assert_eq!(v, ["1", "2", "3"]);
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.2.0[src]
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the matches method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); assert_eq!(v, ["3", "2", "1"]);
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
P: Pattern<'a>, 1.5.0[src]
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
P: Pattern<'a>, An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat within self that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str, char, or a closure that determines
if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); assert_eq!(v, [(1, "abc"), (4, "abc")]); let v: Vec<_> = "ababa".match_indices("aba").collect(); assert_eq!(v, [(0, "aba")]); // only the first `aba`
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.5.0[src]
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over the disjoint matches of a pattern within self,
yielded in reverse order along with the index of the match.
For matches of pat within self that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str, char, or a closure that determines if a
character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); assert_eq!(v, [(4, "abc"), (1, "abc")]); let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); assert_eq!(v, [(2, "aba")]); // only the last `aba`
pub fn trim(&self) -> &str1.0.0[src]
pub fn trim(&self) -> &strReturns a string slice with leading and trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld", s.trim());
pub fn trim_left(&self) -> &str1.0.0[src]
pub fn trim_left(&self) -> &strReturns a string slice with leading whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English"; assert!(Some('E') == s.trim_left().chars().next()); let s = " עברית"; assert!(Some('ע') == s.trim_left().chars().next());
pub fn trim_right(&self) -> &str1.0.0[src]
pub fn trim_right(&self) -> &strReturns a string slice with trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English "; assert!(Some('h') == s.trim_right().chars().rev().next()); let s = "עברית "; assert!(Some('ת') == s.trim_right().chars().rev().next());
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>, 1.0.0[src]
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>, Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char or a closure that determines if a
character matches.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>, 1.0.0[src]
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>, Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src]
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, or a closure that
determines if a character matches.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr, 1.0.0[src]
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr, Parses this string slice into another type.
Because parse is so general, it can cause problems with type
inference. As such, parse is one of the few times you'll see
the syntax affectionately known as the 'turbofish': ::<>. This
helps the inference algorithm understand specifically which type
you're trying to parse into.
parse can parse any type that implements the FromStr trait.
Errors
Will return Err if it's not possible to parse this string slice into
the desired type.
Examples
Basic usage
let four: u32 = "4".parse().unwrap(); assert_eq!(4, four);
Using the 'turbofish' instead of annotating four:
let four = "4".parse::<u32>(); assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>(); assert!(nope.is_err());
pub fn is_ascii(&self) -> bool1.23.0[src]
pub fn is_ascii(&self) -> boolChecks if all characters in this string are within the ASCII range.
Examples
let ascii = "hello!\n"; let non_ascii = "Grüße, Jürgen ❤"; assert!(ascii.is_ascii()); assert!(!non_ascii.is_ascii());
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool1.23.0[src]
pub fn eq_ignore_ascii_case(&self, other: &str) -> boolChecks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS")); assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
Trait Implementations
impl Clone for LocalInternedString[src]
impl Clone for LocalInternedStringfn clone(&self) -> LocalInternedString[src]
fn clone(&self) -> LocalInternedStringReturns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)1.0.0[src]
fn clone_from(&mut self, source: &Self)Performs copy-assignment from source. Read more
impl Copy for LocalInternedString[src]
impl Copy for LocalInternedStringimpl Hash for LocalInternedString[src]
impl Hash for LocalInternedStringfn hash<__H: Hasher>(&self, state: &mut __H)[src]
fn hash<__H: Hasher>(&self, state: &mut __H)Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl PartialOrd for LocalInternedString[src]
impl PartialOrd for LocalInternedStringfn partial_cmp(&self, other: &LocalInternedString) -> Option<Ordering>[src]
fn partial_cmp(&self, other: &LocalInternedString) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, other: &LocalInternedString) -> bool[src]
fn lt(&self, other: &LocalInternedString) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, other: &LocalInternedString) -> bool[src]
fn le(&self, other: &LocalInternedString) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, other: &LocalInternedString) -> bool[src]
fn gt(&self, other: &LocalInternedString) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, other: &LocalInternedString) -> bool[src]
fn ge(&self, other: &LocalInternedString) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl Eq for LocalInternedString[src]
impl Eq for LocalInternedStringimpl Ord for LocalInternedString[src]
impl Ord for LocalInternedStringfn cmp(&self, other: &LocalInternedString) -> Ordering[src]
fn cmp(&self, other: &LocalInternedString) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src]
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src]
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more
impl<U: ?Sized> AsRef<U> for LocalInternedString where
str: AsRef<U>, [src]
impl<U: ?Sized> AsRef<U> for LocalInternedString where
str: AsRef<U>, impl<T: Deref<Target = str>> PartialEq<T> for LocalInternedString[src]
impl<T: Deref<Target = str>> PartialEq<T> for LocalInternedStringfn eq(&self, other: &T) -> bool[src]
fn eq(&self, other: &T) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<LocalInternedString> for str[src]
impl PartialEq<LocalInternedString> for strfn eq(&self, other: &LocalInternedString) -> bool[src]
fn eq(&self, other: &LocalInternedString) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<'a> PartialEq<LocalInternedString> for &'a str[src]
impl<'a> PartialEq<LocalInternedString> for &'a strfn eq(&self, other: &LocalInternedString) -> bool[src]
fn eq(&self, other: &LocalInternedString) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl PartialEq<LocalInternedString> for String[src]
impl PartialEq<LocalInternedString> for Stringfn eq(&self, other: &LocalInternedString) -> bool[src]
fn eq(&self, other: &LocalInternedString) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<'a> PartialEq<LocalInternedString> for &'a String[src]
impl<'a> PartialEq<LocalInternedString> for &'a Stringfn eq(&self, other: &LocalInternedString) -> bool[src]
fn eq(&self, other: &LocalInternedString) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src]
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl !Send for LocalInternedString[src]
impl !Send for LocalInternedStringimpl !Sync for LocalInternedString[src]
impl !Sync for LocalInternedStringimpl Deref for LocalInternedString[src]
impl Deref for LocalInternedStringtype Target = str
The resulting type after dereferencing.
fn deref(&self) -> &str[src]
fn deref(&self) -> &strDereferences the value.
impl Debug for LocalInternedString[src]
impl Debug for LocalInternedStringfn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Display for LocalInternedString[src]
impl Display for LocalInternedStringfn fmt(&self, f: &mut Formatter) -> Result[src]
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl Decodable for LocalInternedString[src]
impl Decodable for LocalInternedStringimpl Encodable for LocalInternedString[src]
impl Encodable for LocalInternedString