rust-rule-miner 0.1.0

Automatic rule discovery from historical data using association rule mining, sequential pattern mining, and graph-based pattern matching. Generates executable rules for rust-rule-engine.
Documentation

rust-rule-miner πŸ”β›οΈ

Crates.io Documentation License: MIT

Automatic rule discovery from historical data using association rule mining, sequential pattern mining, and graph-based pattern matching.

Discover business rules, recommendations, and patterns from your data without manual rule authoring!


🎯 Features

  • Association Rule Mining - Discover "If X then Y" patterns (Apriori, FP-Growth algorithms)
  • Sequential Pattern Mining - Find time-ordered patterns (A β†’ B β†’ C)
  • Graph-Based Patterns - Model entity relationships and discover complex patterns
  • Quality Metrics - Confidence, Support, Lift, Conviction scores for each rule
  • GRL Export - Generate executable rules for rust-rule-engine
  • Excel/CSV Loading - Stream large datasets from Excel (.xlsx) and CSV files with ultra-low memory using excelstream
  • Visualization - Export graphs to DOT format for Graphviz

πŸš€ Quick Start

use rust_rule_miner::{RuleMiner, Transaction, MiningConfig};
use chrono::Utc;

// 1. Load historical transactions
let transactions = vec![
    Transaction::new("tx1", vec!["Laptop", "Mouse", "Keyboard"], Utc::now()),
    Transaction::new("tx2", vec!["Laptop", "Mouse"], Utc::now()),
    Transaction::new("tx3", vec!["Laptop", "Mouse", "USB-C Hub"], Utc::now()),
    Transaction::new("tx4", vec!["Phone", "Phone Case"], Utc::now()),
];

// 2. Configure mining parameters
let config = MiningConfig {
    min_support: 0.3,      // 30% of transactions
    min_confidence: 0.7,   // 70% confidence
    min_lift: 1.2,         // 20% above random chance
    max_time_gap: None,
    algorithm: MiningAlgorithm::Apriori,
};

// 3. Mine association rules
let mut miner = RuleMiner::new(config);
miner.add_transactions(transactions)?;

let rules = miner.mine_association_rules()?;

// 4. Display discovered rules
for rule in &rules {
    println!("Rule: {:?} => {:?}", rule.antecedent, rule.consequent);
    println!("  Confidence: {:.1}%", rule.metrics.confidence * 100.0);
    println!("  Support: {:.1}%", rule.metrics.support * 100.0);
    println!("  Lift: {:.2}", rule.metrics.lift);
}

// Output:
// Rule: ["Laptop"] => ["Mouse"]
//   Confidence: 100.0%
//   Support: 75.0%
//   Lift: 1.33

πŸ“¦ Installation

[dependencies]
rust-rule-miner = "0.1"

πŸ“Š Loading Data from Excel/CSV

Stream large datasets with constant memory usage using excelstream:

use rust_rule_miner::data_loader::DataLoader;

// Load from CSV file (ultra-fast, ~1.2M rows/sec)
let transactions = DataLoader::from_csv("sales_data.csv")?;

// Load from Excel file (.xlsx)
let transactions = DataLoader::from_excel("sales_data.xlsx", 0)?;  // 0 = first sheet

// Mine rules from loaded data
let mut miner = RuleMiner::new(config);
miner.add_transactions(transactions)?;
let rules = miner.mine_association_rules()?;

Expected file format:

transaction_id,items,timestamp
tx001,"Laptop,Mouse,Keyboard",2024-01-01T10:00:00Z
tx002,"Phone,Phone Case",2024-01-02T11:30:00Z

Memory usage: ~3-35 MB regardless of file size! πŸš€


πŸ”§ Use Cases

1. E-commerce Product Recommendations

// Load historical purchase data from CSV
let transactions = DataLoader::from_csv("purchase_history.csv")?;

// Discover: "Customers who bought X also bought Y"
let mut miner = RuleMiner::new(config);
miner.add_transactions(transactions)?;

let rules = miner.mine_association_rules()?;
// Result: Laptop (85%) β†’ Mouse, Keyboard (75%) β†’ Monitor

2. Fraud Detection Pattern Discovery

// Find patterns unique to fraud cases
let fraud_miner = RuleMiner::new(config);
fraud_miner.add_transactions(fraud_cases)?;

let patterns = fraud_miner.mine_association_rules()?;
// Result: IP_mismatch + unusual_time + high_amount β†’ fraud (90%)

3. Medical Diagnosis Support

// Discover: "Symptoms A, B, C β†’ Likely Disease X"
let medical_miner = RuleMiner::new(MiningConfig {
    min_confidence: 0.90,  // High confidence for medical
    ..Default::default()
});

4. Sequential Pattern Mining

use std::time::Duration;

// Find time-ordered patterns
let config = MiningConfig {
    max_time_gap: Some(Duration::from_secs(7 * 24 * 3600)),  // 7 days
    ..Default::default()
};

let sequential_patterns = miner.find_sequential_patterns()?;
// Result: Laptop β†’ (2 days) β†’ Mouse β†’ (5 days) β†’ Laptop Bag

🎨 Export to rust-rule-engine

Generate executable GRL rules:

// Generate GRL code
let grl_code = miner.to_grl(&rules);

// Save to file
std::fs::write("mined_rules.grl", grl_code)?;

// Load into rust-rule-engine
use rust_rule_engine::RuleEngine;

let mut engine = RuleEngine::new();
engine.add_rules_from_grl(&grl_code)?;

// Use for recommendations
let mut facts = Facts::new();
facts.set("ShoppingCart.items", vec!["Laptop"]);
engine.execute(&mut facts)?;

Generated GRL (rust-rule-engine v1.15.0+ with += operator):

// Auto-generated rules from pattern mining
// Generated: 2026-01-03 14:00:00 UTC

// Rule #1: Laptop β†’ Mouse
// Confidence: 85.7% | Support: 60.0% | Lift: 1.43
rule "Mined_Laptop_Implies_Mouse" salience 85 no-loop {
    when
        ShoppingCart.items contains "Laptop" &&
        !(Recommendation.items contains "Mouse")
    then
        Recommendation.items += "Mouse";  // Array append operator (v1.15.0+)
        LogMessage("Rule fired: confidence 85.7%");
}

πŸ“Š Algorithms

1. Apriori (Classic)

  • Best for: Small to medium datasets (<10k transactions)
  • Pros: Simple, easy to understand, breadth-first search
  • Cons: Can be slow with many unique items

2. FP-Growth (Recommended)

  • Best for: Large datasets (10k+ transactions)
  • Pros: Faster than Apriori, no candidate generation
  • Cons: More complex, uses more memory

3. Sequential Pattern Mining

  • Best for: Time-ordered event sequences
  • Features: Supports time windows, gap constraints

🎯 Quality Metrics

Each discovered rule includes:

  • Confidence: P(B|A) - How often B happens when A happens
  • Support: P(A ∧ B) - How common the pattern is overall
  • Lift: Confidence / P(B) - Correlation strength (>1: positive, <1: negative)
  • Conviction: How much more often A implies B than expected by chance

πŸ“ˆ Performance

Benchmarks with default config (min_support=0.05, min_confidence=0.6):

Dataset Size Algorithm Time Memory Throughput
100 transactions Apriori ~10-20ms ~5 MB 5-10K tx/s
1,000 transactions Apriori ~100-200ms ~10-15 MB 5-10K tx/s
10,000 transactions Apriori ~1-2s ~30-50 MB 5-10K tx/s
100,000 transactions Apriori ~10-20s ~200-500 MB 5-10K tx/s

Notes:

  • Performance varies with min_support threshold (lower = slower)
  • Memory usage depends on number of unique items and patterns
  • excelstream provides constant ~3-35 MB memory during data loading
  • See docs/PERFORMANCE.md for detailed benchmarks

πŸ”— Integration with rust-rule-engine

This crate is designed to work seamlessly with rust-rule-engine v1.15.0+:

  1. Mine rules from historical data (this crate)
  2. Export to GRL format with += array append operator
  3. Execute rules with RETE algorithm (rust-rule-engine)
  4. Explain decisions with backward chaining (rust-rule-engine)

Requirements: rust-rule-engine v1.15.0 or higher (for += operator support)

[dev-dependencies]
rust-rule-engine = "1.15.0"  # Required for += array append in GRL

πŸ“š Examples

See examples/ directory:

  • basic_mining.rs - Simple association rule mining
  • ecommerce_recommendations.rs - Product recommendation system
  • fraud_detection.rs - Fraud pattern discovery
  • sequential_patterns.rs - Time-ordered pattern mining
  • graph_patterns.rs - Graph-based pattern matching

πŸ—ΊοΈ Roadmap

  • Apriori algorithm
  • Association rule generation
  • Quality metrics (confidence, support, lift)
  • GRL export
  • FP-Growth algorithm (Week 3-4)
  • Sequential pattern mining (Week 6)
  • Graph pattern matching (Week 8)
  • Incremental mining
  • Multi-level mining (category hierarchies)
  • Negative pattern mining

πŸ“– Documentation


🀝 Contributing

Contributions welcome! See CONTRIBUTING.md.


πŸ“„ License

MIT License - see LICENSE file.


πŸ”¬ Research & References

  • Apriori: Agrawal & Srikant (VLDB 1994) - "Fast Algorithms for Mining Association Rules"
  • FP-Growth: Han et al. (SIGMOD 2000) - "Mining Frequent Patterns without Candidate Generation"
  • Sequential Patterns: Agrawal & Srikant (ICDE 1995) - "Mining Sequential Patterns"

🌟 Related Projects


Built with ❀️ in Rust πŸ¦€