rust_query/transaction.rs
1use std::{
2 cell::RefCell, convert::Infallible, iter::zip, marker::PhantomData, sync::atomic::AtomicI64,
3};
4
5use rusqlite::ErrorCode;
6use sea_query::{
7 Alias, CommonTableExpression, DeleteStatement, Expr, ExprTrait, InsertStatement, IntoTableRef,
8 SelectStatement, SqliteQueryBuilder, UpdateStatement, WithClause,
9};
10use sea_query_rusqlite::RusqliteBinder;
11use self_cell::{MutBorrow, self_cell};
12
13use crate::{
14 IntoExpr, IntoSelect, Table, TableRow,
15 joinable::DynJoinable,
16 migrate::{Schema, check_schema, schema_version, user_version},
17 private::{Joinable, Reader},
18 query::{OwnedRows, Query, track_stmt},
19 rows::Rows,
20 value::{DynTypedExpr, MyTyp, SecretFromSql, ValueBuilder},
21 writable::TableInsert,
22};
23
24/// [Database] is a proof that the database has been configured.
25///
26/// Creating a [Database] requires going through the steps to migrate an existing database to
27/// the required schema, or creating a new database from scratch (See also [crate::migration::Config]).
28/// Please see [Database::migrator] to get started.
29///
30/// Having done the setup to create a compatible database is sadly not a guarantee that the
31/// database will stay compatible for the lifetime of the [Database] struct.
32/// That is why [Database] also stores the `schema_version`. This allows detecting non-malicious
33/// modifications to the schema and gives us the ability to panic when this is detected.
34/// Such non-malicious modification of the schema can happen for example if another [Database]
35/// instance is created with additional migrations (e.g. by another newer instance of your program).
36pub struct Database<S> {
37 pub(crate) manager: r2d2_sqlite::SqliteConnectionManager,
38 pub(crate) schema_version: AtomicI64,
39 pub(crate) schema: PhantomData<S>,
40 pub(crate) mut_lock: parking_lot::FairMutex<()>,
41}
42
43use rusqlite::Connection;
44type RTransaction<'x> = Option<rusqlite::Transaction<'x>>;
45
46self_cell!(
47 pub struct OwnedTransaction {
48 owner: MutBorrow<Connection>,
49
50 #[covariant]
51 dependent: RTransaction,
52 }
53);
54
55/// SAFETY:
56/// `RTransaction: !Send` because it borrows from `Connection` and `Connection: !Sync`.
57/// `OwnedTransaction` can be `Send` because we know that `dependent` is the only
58/// borrow of `owner` and `OwnedTransaction: !Sync` so `dependent` can not be borrowed
59/// from multiple threads.
60unsafe impl Send for OwnedTransaction {}
61assert_not_impl_any! {OwnedTransaction: Sync}
62
63thread_local! {
64 pub(crate) static TXN: RefCell<Option<TransactionWithRows>> = const { RefCell::new(None) };
65}
66
67impl OwnedTransaction {
68 pub(crate) fn get(&self) -> &rusqlite::Transaction<'_> {
69 self.borrow_dependent().as_ref().unwrap()
70 }
71
72 pub(crate) fn with(mut self, f: impl FnOnce(rusqlite::Transaction<'_>)) {
73 self.with_dependent_mut(|_, b| f(b.take().unwrap()))
74 }
75}
76
77type OwnedRowsVec<'x> = slab::Slab<OwnedRows<'x>>;
78self_cell!(
79 pub struct TransactionWithRows {
80 owner: OwnedTransaction,
81
82 #[not_covariant]
83 dependent: OwnedRowsVec,
84 }
85);
86
87impl TransactionWithRows {
88 pub(crate) fn new_empty(txn: OwnedTransaction) -> Self {
89 Self::new(txn, |_| slab::Slab::new())
90 }
91
92 pub(crate) fn get(&self) -> &rusqlite::Transaction<'_> {
93 self.borrow_owner().get()
94 }
95}
96
97impl<S: Send + Sync + Schema> Database<S> {
98 /// Create a [Transaction]. Creating the transaction will not block by default.
99 ///
100 /// This function will panic if the schema was modified compared to when the [Database] value
101 /// was created. This can happen for example by running another instance of your program with
102 /// additional migrations.
103 ///
104 /// Note that many systems have a limit on the number of file descriptors that can
105 /// exist in a single process. On my machine the soft limit is (1024) by default.
106 /// If this limit is reached, it may cause a panic in this method.
107 pub fn transaction<R: Send>(&self, f: impl Send + FnOnce(&'static Transaction<S>) -> R) -> R {
108 let res = std::thread::scope(|scope| {
109 scope
110 .spawn(|| {
111 use r2d2::ManageConnection;
112 let conn = self.manager.connect().unwrap();
113
114 let owned = OwnedTransaction::new(MutBorrow::new(conn), |conn| {
115 Some(conn.borrow_mut().transaction().unwrap())
116 });
117
118 f(Transaction::new_checked(owned, &self.schema_version))
119 })
120 .join()
121 });
122 match res {
123 Ok(val) => val,
124 Err(payload) => std::panic::resume_unwind(payload),
125 }
126 }
127
128 /// Create a mutable [Transaction].
129 /// This operation needs to wait for all other mutable [Transaction]s for this database to be finished.
130 /// There is currently no timeout on this operation, so it will wait indefinitly if required.
131 ///
132 /// Whether the transaction is commited depends on the result of the closure.
133 /// The transaction is only commited if the closure return [Ok]. In the case that it returns [Err]
134 /// or when the closure panics, a rollback is performed.
135 ///
136 /// This function will panic if the schema was modified compared to when the [Database] value
137 /// was created. This can happen for example by running another instance of your program with
138 /// additional migrations.
139 ///
140 /// Note that many systems have a limit on the number of file descriptors that can
141 /// exist in a single process. On my machine the soft limit is (1024) by default.
142 /// If this limit is reached, it may cause a panic in this method.
143 pub fn transaction_mut<O: Send, E: Send>(
144 &self,
145 f: impl Send + FnOnce(&'static mut Transaction<S>) -> Result<O, E>,
146 ) -> Result<O, E> {
147 let join_res = std::thread::scope(|scope| {
148 scope
149 .spawn(|| {
150 // Acquire the lock before creating the connection.
151 // Technically we can acquire the lock later, but we don't want to waste
152 // file descriptors on transactions that need to wait anyway.
153 let guard = self.mut_lock.lock();
154
155 use r2d2::ManageConnection;
156 let conn = self.manager.connect().unwrap();
157
158 let owned = OwnedTransaction::new(MutBorrow::new(conn), |conn| {
159 let txn = conn
160 .borrow_mut()
161 .transaction_with_behavior(rusqlite::TransactionBehavior::Immediate)
162 .unwrap();
163 Some(txn)
164 });
165 // if this panics then the transaction is rolled back and the guard is dropped.
166 let res = f(Transaction::new_checked(owned, &self.schema_version));
167
168 // Drop the guard before commiting to let sqlite go to the next transaction
169 // more quickly while guaranteeing that the database will unlock soon.
170 drop(guard);
171
172 let owned = TXN.take().unwrap().into_owner();
173
174 if res.is_ok() {
175 owned.with(|x| x.commit().unwrap());
176 } else {
177 owned.with(|x| x.rollback().unwrap());
178 }
179
180 res
181 })
182 .join()
183 });
184
185 match join_res {
186 Ok(val) => val,
187 Err(payload) => std::panic::resume_unwind(payload),
188 }
189 }
190
191 /// Same as [Self::transaction_mut], but always commits the transaction.
192 ///
193 /// The only exception is that if the closure panics, a rollback is performed.
194 pub fn transaction_mut_ok<R: Send>(
195 &self,
196 f: impl Send + FnOnce(&'static mut Transaction<S>) -> R,
197 ) -> R {
198 self.transaction_mut(|txn| Ok::<R, Infallible>(f(txn)))
199 .unwrap()
200 }
201
202 /// Create a new [rusqlite::Connection] to the database.
203 ///
204 /// You can do (almost) anything you want with this connection as it is almost completely isolated from all other
205 /// [rust_query] connections. The only thing you should not do here is changing the schema.
206 /// Schema changes are detected with the `schema_version` pragma and will result in a panic when creating a new
207 /// [rust_query] transaction.
208 ///
209 /// The `foreign_keys` pragma is always enabled here, even if [crate::migrate::ForeignKeys::SQLite] is not used.
210 ///
211 /// Note that many systems have a limit on the number of file descriptors that can
212 /// exist in a single process. On my machine the soft limit is (1024) by default.
213 /// If this limit is reached, it may cause a panic in this method.
214 pub fn rusqlite_connection(&self) -> rusqlite::Connection {
215 use r2d2::ManageConnection;
216 let conn = self.manager.connect().unwrap();
217 conn.pragma_update(None, "foreign_keys", "ON").unwrap();
218 conn
219 }
220}
221
222/// [Transaction] can be used to query and update the database.
223///
224/// From the perspective of a [Transaction] each other [Transaction] is fully applied or not at all.
225/// Futhermore, the effects of [Transaction]s have a global order.
226/// So if we have mutations `A` and then `B`, it is impossible for a [Transaction] to see the effect of `B` without seeing the effect of `A`.
227pub struct Transaction<S> {
228 pub(crate) _p2: PhantomData<S>,
229 pub(crate) _local: PhantomData<*const ()>,
230}
231
232impl<S> Transaction<S> {
233 pub(crate) fn new() -> Self {
234 Self {
235 _p2: PhantomData,
236 _local: PhantomData,
237 }
238 }
239
240 pub(crate) fn new_ref() -> &'static mut Self {
241 // no memory is leaked because Self is zero sized
242 Box::leak(Box::new(Self::new()))
243 }
244}
245
246impl<S: Schema> Transaction<S> {
247 /// This will check the schema version and panic if it is not as expected
248 pub(crate) fn new_checked(txn: OwnedTransaction, expected: &AtomicI64) -> &'static mut Self {
249 let schema_version = schema_version(txn.get());
250 // If the schema version is not the expected version then we
251 // check if the changes are acceptable.
252 if schema_version != expected.load(std::sync::atomic::Ordering::Relaxed) {
253 if user_version(txn.get()).unwrap() != S::VERSION {
254 panic!("The database user_version changed unexpectedly")
255 }
256
257 TXN.set(Some(TransactionWithRows::new_empty(txn)));
258 check_schema::<S>(Self::new_ref());
259 expected.store(schema_version, std::sync::atomic::Ordering::Relaxed);
260 } else {
261 TXN.set(Some(TransactionWithRows::new_empty(txn)));
262 }
263
264 const {
265 assert!(size_of::<Self>() == 0);
266 }
267 Self::new_ref()
268 }
269}
270
271impl<S> Transaction<S> {
272 /// Execute a query with multiple results.
273 ///
274 /// ```
275 /// # use rust_query::{private::doctest::*};
276 /// # get_txn(|txn| {
277 /// let user_names = txn.query(|rows| {
278 /// let user = rows.join(User);
279 /// rows.into_vec(&user.name)
280 /// });
281 /// assert_eq!(user_names, vec!["Alice".to_owned()]);
282 /// # });
283 /// ```
284 pub fn query<'t, F, R>(&'t self, f: F) -> R
285 where
286 F: for<'inner> FnOnce(&mut Query<'t, 'inner, S>) -> R,
287 {
288 // Execution already happens in a [Transaction].
289 // and thus any [TransactionMut] that it might be borrowed
290 // from is borrowed immutably, which means the rows can not change.
291
292 let q = Rows {
293 phantom: PhantomData,
294 ast: Default::default(),
295 _p: PhantomData,
296 };
297 f(&mut Query {
298 q,
299 phantom: PhantomData,
300 })
301 }
302
303 /// Retrieve a single result from the database.
304 ///
305 /// ```
306 /// # use rust_query::{private::doctest::*, IntoExpr};
307 /// # rust_query::private::doctest::get_txn(|txn| {
308 /// let res = txn.query_one("test".into_expr());
309 /// assert_eq!(res, "test");
310 /// # });
311 /// ```
312 ///
313 /// Instead of using [Self::query_one] in a loop, it is better to
314 /// call [Self::query] and return all results at once.
315 pub fn query_one<O: 'static>(&self, val: impl IntoSelect<'static, S, Out = O>) -> O {
316 self.query(|e| e.into_iter(val.into_select()).next().unwrap())
317 }
318
319 pub fn lazy<'t, T: MyTyp>(&'t self, val: impl IntoExpr<'static, S, Typ = T>) -> T::Lazy<'t> {
320 T::out_to_lazy(self.query_one(val.into_expr()))
321 }
322
323 pub fn lazy_iter<'t, T: Table<Schema = S>>(
324 &'t self,
325 val: impl Joinable<'static, Typ = T>,
326 ) -> LazyIter<'t, T> {
327 let val = DynJoinable::new(val);
328 self.query(|rows| {
329 let table = rows.join(val);
330 LazyIter {
331 txn: self,
332 iter: rows.into_iter(table),
333 }
334 })
335 }
336}
337
338pub struct LazyIter<'t, T: Table> {
339 txn: &'t Transaction<T::Schema>,
340 iter: crate::query::Iter<'t, TableRow<T>>,
341}
342
343impl<'t, T: Table> Iterator for LazyIter<'t, T> {
344 type Item = <T as MyTyp>::Lazy<'t>;
345
346 fn next(&mut self) -> Option<Self::Item> {
347 self.iter.next().map(|x| self.txn.lazy(x))
348 }
349}
350
351impl<S: 'static> Transaction<S> {
352 /// Try inserting a value into the database.
353 ///
354 /// Returns [Ok] with a reference to the new inserted value or an [Err] with conflict information.
355 /// The type of conflict information depends on the number of unique constraints on the table:
356 /// - 0 unique constraints => [Infallible]
357 /// - 1 unique constraint => [Expr] reference to the conflicting table row.
358 /// - 2+ unique constraints => `()` no further information is provided.
359 ///
360 /// ```
361 /// # use rust_query::{private::doctest::*, IntoExpr};
362 /// # rust_query::private::doctest::get_txn(|mut txn| {
363 /// let res = txn.insert(User {
364 /// name: "Bob",
365 /// });
366 /// assert!(res.is_ok());
367 /// let res = txn.insert(User {
368 /// name: "Bob",
369 /// });
370 /// assert!(res.is_err(), "there is a unique constraint on the name");
371 /// # });
372 /// ```
373 pub fn insert<T: Table<Schema = S>>(
374 &mut self,
375 val: impl TableInsert<T = T>,
376 ) -> Result<TableRow<T>, T::Conflict> {
377 try_insert_private(T::NAME.into_table_ref(), None, val.into_insert())
378 }
379
380 /// This is a convenience function to make using [Transaction::insert]
381 /// easier for tables without unique constraints.
382 ///
383 /// The new row is added to the table and the row reference is returned.
384 pub fn insert_ok<T: Table<Schema = S, Conflict = Infallible>>(
385 &mut self,
386 val: impl TableInsert<T = T>,
387 ) -> TableRow<T> {
388 let Ok(row) = self.insert(val);
389 row
390 }
391
392 /// This is a convenience function to make using [Transaction::insert]
393 /// easier for tables with exactly one unique constraints.
394 ///
395 /// The new row is inserted and the reference to the row is returned OR
396 /// an existing row is found which conflicts with the new row and a reference
397 /// to the conflicting row is returned.
398 ///
399 /// ```
400 /// # use rust_query::{private::doctest::*, IntoExpr};
401 /// # rust_query::private::doctest::get_txn(|mut txn| {
402 /// let bob = txn.insert(User {
403 /// name: "Bob",
404 /// }).unwrap();
405 /// let bob2 = txn.find_or_insert(User {
406 /// name: "Bob", // this will conflict with the existing row.
407 /// });
408 /// assert_eq!(bob, bob2);
409 /// # });
410 /// ```
411 pub fn find_or_insert<T: Table<Schema = S, Conflict = TableRow<T>>>(
412 &mut self,
413 val: impl TableInsert<T = T>,
414 ) -> TableRow<T> {
415 match self.insert(val) {
416 Ok(row) => row,
417 Err(row) => row,
418 }
419 }
420
421 /// Try updating a row in the database to have new column values.
422 ///
423 /// Updating can fail just like [Transaction::insert] because of unique constraint conflicts.
424 /// This happens when the new values are in conflict with an existing different row.
425 ///
426 /// When the update succeeds, this function returns [Ok], when it fails it returns [Err] with one of
427 /// three conflict types:
428 /// - 0 unique constraints => [Infallible]
429 /// - 1 unique constraint => [Expr] reference to the conflicting table row.
430 /// - 2+ unique constraints => `()` no further information is provided.
431 ///
432 /// ```
433 /// # use rust_query::{private::doctest::*, IntoExpr, Update};
434 /// # rust_query::private::doctest::get_txn(|mut txn| {
435 /// let bob = txn.insert(User {
436 /// name: "Bob",
437 /// }).unwrap();
438 /// txn.update(bob, User {
439 /// name: Update::set("New Bob"),
440 /// }).unwrap();
441 /// # });
442 /// ```
443 pub fn update<T: Table<Schema = S>>(
444 &mut self,
445 row: impl IntoExpr<'static, S, Typ = T>,
446 val: T::Update,
447 ) -> Result<(), T::Conflict> {
448 let mut id = ValueBuilder::default();
449 let row = row.into_expr();
450 let (id, _) = id.simple_one(DynTypedExpr::erase(&row));
451
452 let val = T::apply_try_update(val, row);
453 let mut reader = Reader::default();
454 T::read(&val, &mut reader);
455 let (col_names, col_exprs): (Vec<_>, Vec<_>) = reader.builder.into_iter().collect();
456
457 let (select, col_fields) = ValueBuilder::default().simple(col_exprs);
458 let cte = CommonTableExpression::new()
459 .query(select)
460 .columns(col_fields.clone())
461 .table_name(Alias::new("cte"))
462 .to_owned();
463 let with_clause = WithClause::new().cte(cte).to_owned();
464
465 let mut update = UpdateStatement::new()
466 .table(("main", T::NAME))
467 .cond_where(Expr::col(("main", T::NAME, T::ID)).in_subquery(id))
468 .to_owned();
469
470 for (name, field) in zip(col_names, col_fields) {
471 let select = SelectStatement::new()
472 .from(Alias::new("cte"))
473 .column(field)
474 .to_owned();
475 let value = sea_query::Expr::SubQuery(
476 None,
477 Box::new(sea_query::SubQueryStatement::SelectStatement(select)),
478 );
479 update.value(Alias::new(name), value);
480 }
481
482 let (query, args) = update.with(with_clause).build_rusqlite(SqliteQueryBuilder);
483
484 let res = TXN.with_borrow(|txn| {
485 let txn = txn.as_ref().unwrap().get();
486
487 let mut stmt = txn.prepare_cached(&query).unwrap();
488 stmt.execute(&*args.as_params())
489 });
490
491 match res {
492 Ok(1) => Ok(()),
493 Ok(n) => panic!("unexpected number of updates: {n}"),
494 Err(rusqlite::Error::SqliteFailure(kind, Some(_val)))
495 if kind.code == ErrorCode::ConstraintViolation =>
496 {
497 // val looks like "UNIQUE constraint failed: playlist_track.playlist, playlist_track.track"
498 Err(T::get_conflict_unchecked(self, &val))
499 }
500 Err(err) => panic!("{err:?}"),
501 }
502 }
503
504 /// This is a convenience function to use [Transaction::update] for updates
505 /// that can not cause unique constraint violations.
506 ///
507 /// This method can be used for all tables, it just does not allow modifying
508 /// columns that are part of unique constraints.
509 pub fn update_ok<T: Table<Schema = S>>(
510 &mut self,
511 row: impl IntoExpr<'static, S, Typ = T>,
512 val: T::UpdateOk,
513 ) {
514 match self.update(row, T::update_into_try_update(val)) {
515 Ok(val) => val,
516 Err(_) => {
517 unreachable!("update can not fail")
518 }
519 }
520 }
521
522 /// Convert the [Transaction] into a [TransactionWeak] to allow deletions.
523 pub fn downgrade(&'static mut self) -> &'static mut TransactionWeak<S> {
524 // TODO: clean this up
525 Box::leak(Box::new(TransactionWeak { inner: PhantomData }))
526 }
527}
528
529/// This is the weak version of [Transaction].
530///
531/// The reason that it is called `weak` is because [TransactionWeak] can not guarantee
532/// that [TableRow]s prove the existence of their particular row.
533///
534/// [TransactionWeak] is useful because it allowes deleting rows.
535pub struct TransactionWeak<S> {
536 inner: PhantomData<Transaction<S>>,
537}
538
539impl<S: Schema> TransactionWeak<S> {
540 /// Try to delete a row from the database.
541 ///
542 /// This will return an [Err] if there is a row that references the row that is being deleted.
543 /// When this method returns [Ok] it will contain a [bool] that is either
544 /// - `true` if the row was just deleted.
545 /// - `false` if the row was deleted previously in this transaction.
546 pub fn delete<T: Table<Schema = S>>(&mut self, val: TableRow<T>) -> Result<bool, T::Referer> {
547 let schema = crate::schema::from_macro::Schema::new::<S>();
548
549 // This is a manual check that foreign key constraints are not violated.
550 // We do this manually because we don't want to enabled foreign key constraints for the whole
551 // transaction (and is not possible to enable for part of a transaction).
552 let mut checks = vec![];
553 for (table_name, table) in &schema.tables {
554 for col in table.columns.iter().filter_map(|(col_name, col)| {
555 let col = &col.def;
556 col.fk
557 .as_ref()
558 .is_some_and(|(t, c)| t == T::NAME && c == T::ID)
559 .then_some(col_name)
560 }) {
561 let stmt = SelectStatement::new()
562 .expr(
563 val.in_subquery(
564 SelectStatement::new()
565 .from(Alias::new(table_name))
566 .column(Alias::new(col))
567 .take(),
568 ),
569 )
570 .take();
571 checks.push(stmt.build_rusqlite(SqliteQueryBuilder));
572 }
573 }
574
575 let stmt = DeleteStatement::new()
576 .from_table(("main", T::NAME))
577 .cond_where(Expr::col(("main", T::NAME, T::ID)).eq(val.inner.idx))
578 .take();
579
580 let (query, args) = stmt.build_rusqlite(SqliteQueryBuilder);
581
582 TXN.with_borrow(|txn| {
583 let txn = txn.as_ref().unwrap().get();
584
585 for (query, args) in checks {
586 let mut stmt = txn.prepare_cached(&query).unwrap();
587 match stmt.query_one(&*args.as_params(), |r| r.get(0)) {
588 Ok(true) => return Err(T::get_referer_unchecked()),
589 Ok(false) => {}
590 Err(err) => panic!("{err:?}"),
591 }
592 }
593
594 let mut stmt = txn.prepare_cached(&query).unwrap();
595 match stmt.execute(&*args.as_params()) {
596 Ok(0) => Ok(false),
597 Ok(1) => Ok(true),
598 Ok(n) => {
599 panic!("unexpected number of deletes {n}")
600 }
601 Err(err) => panic!("{err:?}"),
602 }
603 })
604 }
605
606 /// Delete a row from the database.
607 ///
608 /// This is the infallible version of [TransactionWeak::delete].
609 ///
610 /// To be able to use this method you have to mark the table as `#[no_reference]` in the schema.
611 pub fn delete_ok<T: Table<Referer = Infallible, Schema = S>>(
612 &mut self,
613 val: TableRow<T>,
614 ) -> bool {
615 let Ok(res) = self.delete(val);
616 res
617 }
618
619 /// This allows you to do (almost) anything you want with the internal [rusqlite::Transaction].
620 ///
621 /// Note that there are some things that you should not do with the transaction, such as:
622 /// - Changes to the schema, these will result in a panic as described in [Database].
623 /// - Making changes that violate foreign-key constraints (see below).
624 ///
625 /// Sadly it is not possible to enable (or disable) the `foreign_keys` pragma during a transaction.
626 /// This means that whether this pragma is enabled depends on which [crate::migrate::ForeignKeys]
627 /// option is used and can not be changed.
628 pub fn rusqlite_transaction<R>(&mut self, f: impl FnOnce(&rusqlite::Transaction) -> R) -> R {
629 TXN.with_borrow(|txn| f(txn.as_ref().unwrap().get()))
630 }
631}
632
633pub fn try_insert_private<T: Table>(
634 table: sea_query::TableRef,
635 idx: Option<i64>,
636 val: T::Insert,
637) -> Result<TableRow<T>, T::Conflict> {
638 let mut reader = Reader::default();
639 T::read(&val, &mut reader);
640 if let Some(idx) = idx {
641 reader.col(T::ID, idx);
642 }
643 let (col_names, col_exprs): (Vec<_>, Vec<_>) = reader.builder.into_iter().collect();
644 let is_empty = col_names.is_empty();
645
646 let (select, _) = ValueBuilder::default().simple(col_exprs);
647
648 let mut insert = InsertStatement::new();
649 insert.into_table(table);
650 insert.columns(col_names.into_iter().map(Alias::new));
651 if is_empty {
652 // select always has at least one column, so we leave it out when there are no columns
653 insert.or_default_values();
654 } else {
655 insert.select_from(select).unwrap();
656 }
657 insert.returning_col(T::ID);
658
659 let (sql, values) = insert.build_rusqlite(SqliteQueryBuilder);
660
661 let res = TXN.with_borrow(|txn| {
662 let txn = txn.as_ref().unwrap().get();
663 track_stmt(txn, &sql, &values);
664
665 let mut statement = txn.prepare_cached(&sql).unwrap();
666 let mut res = statement
667 .query_map(&*values.as_params(), |row| {
668 Ok(TableRow::<T>::from_sql(row.get_ref(T::ID)?)?)
669 })
670 .unwrap();
671
672 res.next().unwrap()
673 });
674
675 match res {
676 Ok(id) => Ok(id),
677 Err(rusqlite::Error::SqliteFailure(kind, Some(_val)))
678 if kind.code == ErrorCode::ConstraintViolation =>
679 {
680 // val looks like "UNIQUE constraint failed: playlist_track.playlist, playlist_track.track"
681 Err(T::get_conflict_unchecked(&Transaction::new(), &val))
682 }
683 Err(err) => panic!("{err:?}"),
684 }
685}