1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use tch::{nn, Tensor, Kind};
use crate::common::dropout::Dropout;
use tch::nn::{EmbeddingConfig, embedding};
use crate::bert::{BertConfig, BertEmbedding};
#[derive(Debug)]
pub struct RobertaEmbeddings {
word_embeddings: nn::Embedding,
position_embeddings: nn::Embedding,
token_type_embeddings: nn::Embedding,
layer_norm: nn::LayerNorm,
dropout: Dropout,
padding_index: i64,
}
impl RobertaEmbeddings {
fn create_position_ids_from_input_ids(&self, x: &Tensor) -> Tensor {
let mask: Tensor = x.ne(self.padding_index).to_kind(Kind::Int64);
mask.cumsum(1, Kind::Int64) * mask + self.padding_index
}
fn create_position_ids_from_embeddings(&self, x: &Tensor) -> Tensor {
let input_shape = x.size();
let input_shape = vec!(input_shape[0], input_shape[1]);
let position_ids: Tensor = Tensor::arange1(self.padding_index + 1, input_shape[0], (Kind::Int64, x.device()));
position_ids.unsqueeze(0).expand(&input_shape, true)
}
}
impl BertEmbedding for RobertaEmbeddings {
fn new(p: &nn::Path, config: &BertConfig) -> RobertaEmbeddings {
let embedding_config = EmbeddingConfig { padding_idx: 1, ..Default::default() };
let word_embeddings: nn::Embedding = embedding(p / "word_embeddings",
config.vocab_size,
config.hidden_size,
embedding_config);
let position_embeddings: nn::Embedding = embedding(p / "position_embeddings",
config.max_position_embeddings,
config.hidden_size,
Default::default());
let token_type_embeddings: nn::Embedding = embedding(p / "token_type_embeddings",
config.type_vocab_size,
config.hidden_size,
Default::default());
let layer_norm_config = nn::LayerNormConfig { eps: 1e-12, ..Default::default() };
let layer_norm: nn::LayerNorm = nn::layer_norm(p / "LayerNorm", vec![config.hidden_size], layer_norm_config);
let dropout: Dropout = Dropout::new(config.hidden_dropout_prob);
RobertaEmbeddings { word_embeddings, position_embeddings, token_type_embeddings, layer_norm, dropout, padding_index: 1 }
}
fn forward_t(&self,
input_ids: Option<Tensor>,
token_type_ids: Option<Tensor>,
position_ids: Option<Tensor>,
input_embeds: Option<Tensor>,
train: bool) -> Result<Tensor, &'static str> {
let (input_embeddings, input_shape) = match &input_ids {
Some(input_value) => match &input_embeds {
Some(_) => { return Err("Only one of input ids or input embeddings may be set"); }
None => (input_value.apply_t(&self.word_embeddings, train), input_value.size())
}
None => match &input_embeds {
Some(embeds) => (embeds.copy(), vec!(embeds.size()[0], embeds.size()[1])),
None => { return Err("Only one of input ids or input embeddings may be set"); }
}
};
let position_ids = match position_ids {
Some(value) => value,
None => match input_ids {
Some(value) => self.create_position_ids_from_input_ids(&value),
None => self.create_position_ids_from_embeddings(&input_embeds.unwrap())
}
};
let token_type_ids = match token_type_ids {
Some(value) => value,
None => Tensor::zeros(&input_shape, (Kind::Int64, input_embeddings.device()))
};
let position_embeddings = position_ids.apply(&self.position_embeddings);
let token_type_embeddings = token_type_ids.apply(&self.token_type_embeddings);
let input_embeddings: Tensor = input_embeddings + position_embeddings + token_type_embeddings;
Ok(input_embeddings.apply(&self.layer_norm).apply_t(&self.dropout, train))
}
}