pub struct ProphetNetForCausalGeneration { /* private fields */ }
Expand description

ProphetNet Model for causal generation

ProphetNet decoder with a vocabulary decoding head It is made of the following blocks:

  • base_model: ProphetNetDecoder Base ProphetNet decoder
  • word_embeddings: word embeddings used by the decoder
  • lm_head: Linear layer without bias to project the hidden states to the vocabulary

Implementations§

Build a new ProphetNetForCausalGeneration

Arguments
  • p - Variable store path for the root of the ProphetNet model
  • config - ProphetNetConfig object defining the model architecture
Example
use rust_bert::prophetnet::{ProphetNetConfig, ProphetNetForCausalGeneration};
use rust_bert::Config;
use std::path::Path;
use tch::{nn, Device};

let config_path = Path::new("path/to/config.json");
let device = Device::Cpu;
let p = nn::VarStore::new(device);
let config = ProphetNetConfig::from_file(config_path);
let prophetnet_model = ProphetNetForCausalGeneration::new(&p.root(), &config);

Forward pass through the model

Arguments
  • input_ids - Optional input tensor of shape (batch size, sequence_length). This or input_embeds must be provided.
  • attention_mask - Optional attention mask of shape (batch size, sequence_length) for the encoder positions. Positions with a mask with value 0 will be masked.
  • input_embeds - Optional input tensor of shape (batch size, sequence_length, embeddings dimension). This or input_ids must be provided.
  • decoder_input_ids - Optional input tensor of shape (batch size, target_sequence_length). Must be provided when running in generation mode (e.g. initialized with a BOS token)
  • old_layer_states - Optional Vector Option<Vec<Option<&LayerState>, Option<&LayerState>>> of length n_layer containing tuples with the past keys and values for both the self attention and the encoder cross attention of each layer of the decoder.
  • decoder_input_embeds - Optional input tensor of shape (batch size, target_sequence_length, embeddings dimension). This or decoder_input_ids must be provided.
  • train - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
Returns
  • ProphetNetGenerationOutput containing:
    • logits - Tensor of shape (batch size, target_sequence_length, vocabulary_size) representing the activations of the last hidden state for the decoder
    • ngram_logits - Tensor of shape (ngram, batch size, target_sequence_length, vocabulary_size) representing the activations of the last hidden state for the decoder ngram stream
    • next_decoder_cache - Option<Vec<Option<LayerState>>> of length n_layer containing the past content for the the attention layers with shape (past_sequence_length, batch size, hidden_size)
    • all_decoder_hidden_states - Option<Vec<Tensor>> of length n_layer with shape (batch size, target_sequence_length, hidden_size)
    • all_ngram_decoder_hidden_states - Option<Vec<Tensor>> of length n_layer with shape (ngram, batch size, target_sequence_length, hidden_size)
    • all_attentions - Option<Vec<Tensor>> of length n_layer with shape (batch size, target_sequence_length, hidden_size)
    • all_ngram_attentions - Option<Vec<Tensor>> of length n_layer with shape (ngram, batch size, target_sequence_length, hidden_size)
    • all_cross_attentions - Option<Vec<Tensor>> of length n_layer with shape (batch size, target_sequence_length, hidden_size)
Example
use rust_bert::prophetnet::{ProphetNetModel, ProphetNetConfig, ProphetNetForCausalGeneration};
let (batch_size, sequence_length, target_sequence_length) = (64, 128, 32);
let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
let attention_mask = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let target_tensor = Tensor::ones(&[batch_size, sequence_length], (Int64, device));
let decoder_input_ids = Tensor::ones(&[batch_size, target_sequence_length], (Kind::Float, device));

let model_output = no_grad(|| {
    prophetnet_model.forward_t(
        Some(&input_tensor),
        Some(&attention_mask),
        None,
        Some(&decoder_input_ids),
        None,
        None,
        false
    )
});

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The alignment of pointer.
The type for initializers.
Initializes a with the given initializer. Read more
Dereferences the given pointer. Read more
Mutably dereferences the given pointer. Read more
Drops the object pointed to by the given pointer. Read more
Should always be Self
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.
Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more