russell_lab 1.2.0

Scientific laboratory for linear algebra and numerical mathematics
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# Russell Lab - Scientific laboratory for linear algebra and numerical mathematics <!-- omit from toc --> 

[![documentation: lab](https://img.shields.io/badge/russell_lab-documentation-blue)](https://docs.rs/russell_lab)

_This crate is part of [Russell - Rust Scientific Library](https://github.com/cpmech/russell)_



## Contents <!-- omit from toc --> 

- [Introduction]#introduction
  - [Documentation]#documentation
- [Installation]#installation
  - [TL;DR (Debian/Ubuntu/Linux)]#tldr-debianubuntulinux
  - [Details]#details
  - [Setting Cargo.toml up]#setting-cargotoml-up
- [Complex numbers]#complex-numbers
- [Examples]#examples
  - [Running an example with Intel MKL]#running-an-example-with-intel-mkl
  - [Sorting small tuples]#sorting-small-tuples
  - [Check first and second derivatives]#check-first-and-second-derivatives
  - [Bessel functions]#bessel-functions
  - [Linear fitting]#linear-fitting
  - [Lagrange interpolation]#lagrange-interpolation
  - [Solution of a 1D PDE using spectral collocation]#solution-of-a-1d-pde-using-spectral-collocation
  - [Numerical integration: perimeter of ellipse]#numerical-integration-perimeter-of-ellipse
  - [Finding a local minimum and a root]#finding-a-local-minimum-and-a-root
  - [Computing the pseudo-inverse matrix]#computing-the-pseudo-inverse-matrix
  - [Matrix visualization]#matrix-visualization
  - [Computing eigenvalues and eigenvectors]#computing-eigenvalues-and-eigenvectors
  - [Cholesky factorization]#cholesky-factorization
- [About the column major representation]#about-the-column-major-representation
- [Benchmarks]#benchmarks
  - [Jacobi Rotation versus LAPACK DSYEV]#jacobi-rotation-versus-lapack-dsyev
- [Notes for developers]#notes-for-developers



## Introduction

This library implements specialized mathematical functions (e.g., Bessel, Erf, Gamma) and functions to perform linear algebra computations (e.g., Matrix, Vector, Matrix-Vector, Eigen-decomposition, SVD). This library also implements a set of helpful function for comparing floating-point numbers, measuring computer time, reading table-formatted data, and more.

The code shall be implemented in *native Rust* code as much as possible. However, light interfaces ("wrappers") are implemented for some of the best tools available in numerical mathematics, including [OpenBLAS](https://github.com/OpenMathLib/OpenBLAS) and [Intel MKL](https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/overview.html).

The code is organized in modules:

* `algo` β€” algorithms that depend on the other modules (e.g, Lagrange interpolation)
* `base` β€” "base" functionality to help other modules
* `check` β€” functions to assist in unit and integration testing
* `math` β€” mathematical (specialized) functions and constants
* `matrix` β€” [NumMatrix] struct and associated functions
* `matvec` β€” functions operating on matrices and vectors
* `vector` β€” [NumVector] struct and associated functions

For linear algebra, the main structures are `NumVector` and `NumMatrix`, that are generic Vector and Matrix structures. The Matrix data is stored as [column-major](#col-major). The `Vector` and `Matrix` are `f64` and `Complex64` aliases of `NumVector` and `NumMatrix`, respectively.

The linear algebra functions currently handle only `(f64, i32)` pairs, i.e., accessing the `(double, int)` C functions. We also consider `(Complex64, i32)` pairs.

There are many functions for linear algebra, such as (for Real and Complex types):

* Vector addition, copy, inner and outer products, norms, and more
* Matrix addition, multiplication, copy, singular-value decomposition, eigenvalues, pseudo-inverse, inverse, norms, and more
* Matrix-vector multiplication, and more
* Solution of dense linear systems with symmetric or non-symmetric coefficient matrices, and more
* Reading writing files, `linspace`, grid generators, Stopwatch, linear fitting, and more
* Checking results, comparing float point numbers, and verifying the correctness of derivatives; see `russell_lab::check`

### Documentation

[![documentation: lab](https://img.shields.io/badge/russell_lab-documentation-blue)](https://docs.rs/russell_lab)



## Installation

At this moment, Russell works on **Linux** (Debian/Ubuntu; and maybe Arch). It has some limited functionality on macOS too. In the future, we plan to enable Russell on Windows; however, this will take time because some essential libraries are not easily available on Windows.

### TL;DR (Debian/Ubuntu/Linux)

First:

```bash
sudo apt-get install -y --no-install-recommends \
    g++ \
    gdb \
    gfortran \
    liblapacke-dev \
    libmumps-seq-dev \
    libopenblas-dev \
    libsuitesparse-dev
```

Then:

```bash
cargo add russell_lab
```



### Details

This crate depends on an efficient BLAS library such as [OpenBLAS](https://github.com/OpenMathLib/OpenBLAS) and [Intel MKL](https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/overview.html).

[The root README file presents the steps to install the required dependencies.](https://github.com/cpmech/russell)




### Setting Cargo.toml up

[![Crates.io](https://img.shields.io/crates/v/russell_lab.svg)](https://crates.io/crates/russell_lab)

πŸ‘† Check the crate version and update your Cargo.toml accordingly:

```toml
[dependencies]
russell_lab = "*"
```

Or, considering the optional _features_ ([see more about these here](https://github.com/cpmech/russell)):

```toml
[dependencies]
russell_lab = { version = "*", features = ["intel_mkl"] }
```



## Complex numbers

**Note:** For the functions dealing with complex numbers, the following line must be added to all derived code:

```rust
use num_complex::Complex64;
```

This line will bring `Complex64` to the scope. For convenience the (russell_lab) macro `cpx!` may be used to allocate complex numbers.



## Examples

See also:

* [russell_lab/examples]https://github.com/cpmech/russell/tree/main/russell_lab/examples



### Running an example with Intel MKL

Consider the following [code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/base_auxiliary_blas.rs):

```rust
use russell_lab::*;

fn main() -> Result<(), StrError> {
    println!("Using Intel MKL  = {}", using_intel_mkl());
    println!("BLAS num threads = {}", get_num_threads());
    set_num_threads(2);
    println!("BLAS num threads = {}", get_num_threads());
    Ok(())
}
```

First, run the example without Intel MKL (default):

```bash
cargo run --example base_auxiliary_blas
```

The output looks like this:

```text
Using Intel MKL  = false
BLAS num threads = 24
BLAS num threads = 2
```

Second, run the code with the `intel_mkl` feature:

```bash
cargo run --example base_auxiliary_blas --features intel_mk
```

Then, the output looks like this:

```text
Using Intel MKL  = true
BLAS num threads = 24
BLAS num threads = 2
```



### Sorting small tuples

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/base_sort_small_tuples.rs)

```rust
use russell_lab::base::{sort2, sort3, sort4};
use russell_lab::StrError;

fn main() -> Result<(), StrError> {
    // sorting slices with the standard function
    let mut u2 = vec![2.0, 1.0];
    let mut u3 = vec![3.0, 1.0, 2.0];
    let mut u4 = vec![3.0, 1.0, 4.0, 2.0];
    u2.sort_by(|a, b| a.partial_cmp(b).unwrap());
    u3.sort_by(|a, b| a.partial_cmp(b).unwrap());
    u4.sort_by(|a, b| a.partial_cmp(b).unwrap());
    println!("u2 = {:?}", u2);
    println!("u3 = {:?}", u3);
    println!("u4 = {:?}", u4);
    assert_eq!(&u2, &[1.0, 2.0]);
    assert_eq!(&u3, &[1.0, 2.0, 3.0]);
    assert_eq!(&u4, &[1.0, 2.0, 3.0, 4.0]);

    // sorting small tuples
    let mut v2 = (2.0, 1.0);
    let mut v3 = (3.0, 1.0, 2.0);
    let mut v4 = (3.0, 1.0, 4.0, 2.0);
    sort2(&mut v2);
    sort3(&mut v3);
    sort4(&mut v4);
    println!("v2 = {:?}", v2);
    println!("v3 = {:?}", v3);
    println!("v4 = {:?}", v4);
    assert_eq!(v2, (1.0, 2.0));
    assert_eq!(v3, (1.0, 2.0, 3.0));
    assert_eq!(v4, (1.0, 2.0, 3.0, 4.0));
    Ok(())
}

```



### Check first and second derivatives

Check the implementation of the first and second derivatives of f(x) (illustrated below).

![Inverted and shifted Runge's equation](data/figures/test_function_002.svg)

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/check_1st_and_2nd_derivatives.rs)

```rust
use russell_lab::algo::NoArgs;
use russell_lab::check::{deriv1_approx_eq, deriv2_approx_eq};
use russell_lab::{StrError, Vector};

fn main() -> Result<(), StrError> {
    // f(x)
    let f = |x: f64, _: &mut NoArgs| Ok(1.0 / 2.0 - 1.0 / (1.0 + 16.0 * x * x));

    // g(x) = df/dx(x)
    let g = |x: f64, _: &mut NoArgs| Ok((32.0 * x) / f64::powi(1.0 + 16.0 * f64::powi(x, 2), 2));

    // h(x) = dΒ²f/dxΒ²(x)
    let h = |x: f64, _: &mut NoArgs| {
        Ok((-2048.0 * f64::powi(x, 2)) / f64::powi(1.0 + 16.0 * f64::powi(x, 2), 3)
            + 32.0 / f64::powi(1.0 + 16.0 * f64::powi(x, 2), 2))
    };

    let xx = Vector::linspace(-2.0, 2.0, 9)?;
    let args = &mut 0;
    println!("{:>4}{:>23}{:>23}", "x", "df/dx", "dΒ²f/dxΒ²");
    for x in xx {
        let dfdx = g(x, args)?;
        let d2dfx2 = h(x, args)?;
        println!("{:>4}{:>23}{:>23}", x, dfdx, d2dfx2);
        deriv1_approx_eq(dfdx, x, args, 1e-10, f);
        deriv2_approx_eq(d2dfx2, x, args, 1e-9, f);
    }
    Ok(())
}
```

Output:

```text
   x                  df/dx                dΒ²f/dxΒ²
  -2   -0.01514792899408284  -0.022255803368229403
-1.5   -0.03506208911614317   -0.06759718081851025
  -1   -0.11072664359861592   -0.30612660289029103
-0.5                  -0.64                 -2.816
   0                      0                     32
 0.5                   0.64                 -2.816
   1    0.11072664359861592   -0.30612660289029103
 1.5    0.03506208911614317   -0.06759718081851025
   2    0.01514792899408284  -0.022255803368229403
```



### Bessel functions

Plotting the Bessel J0, J1, and J2 functions:

```rust
use plotpy::{Curve, Plot};
use russell_lab::math::{bessel_j0, bessel_j1, bessel_jn, GOLDEN_RATIO};
use russell_lab::{StrError, Vector};

const OUT_DIR: &str = "/tmp/russell_lab/";

fn main() -> Result<(), StrError> {
    // values
    let xx = Vector::linspace(0.0, 15.0, 101)?;
    let j0 = xx.get_mapped(|x| bessel_j0(x));
    let j1 = xx.get_mapped(|x| bessel_j1(x));
    let j2 = xx.get_mapped(|x| bessel_jn(2, x));
    // plot
    if false { // <<< remove this condition
    let mut curve_j0 = Curve::new();
    let mut curve_j1 = Curve::new();
    let mut curve_j2 = Curve::new();
    curve_j0.set_label("J0").draw(xx.as_data(), j0.as_data());
    curve_j1.set_label("J1").draw(xx.as_data(), j1.as_data());
    curve_j2.set_label("J2").draw(xx.as_data(), j2.as_data());
    let mut plot = Plot::new();
    let path = format!("{}/math_bessel_functions_1.svg", OUT_DIR);
    plot.add(&curve_j0)
        .add(&curve_j1)
        .add(&curve_j2)
        .grid_labels_legend("$x$", "$J_0(x),\\,J_1(x),\\,J_2(x)$")
        .set_figure_size_points(GOLDEN_RATIO * 280.0, 280.0)
        .save(path.as_str())?;
    }
    Ok(())
}
```

Output:

![Bessel functions](data/figures/math_bessel_functions_1.svg)



### Linear fitting

Fit a line through a set of points. The line has slope `m` and intercepts the y axis at `x=0` with `y(x=0) = c`.

```rust
use russell_lab::algo::linear_fitting;
use russell_lab::{approx_eq, StrError, Vector};

fn main() -> Result<(), StrError> {
    // model: c is the y value @ x = 0; m is the slope
    let x = Vector::from(&[0.0, 1.0, 3.0, 5.0]);
    let y = Vector::from(&[1.0, 0.0, 2.0, 4.0]);
    let (c, m) = linear_fitting(&x, &y, false)?;
    println!("c = {}, m = {}", c, m);
    approx_eq(c, 0.1864406779661015, 1e-15);
    approx_eq(m, 0.6949152542372882, 1e-15);
    Ok(())
}
```

Results:

![Linear fitting](data/figures/algo_linear_fitting_1.svg)




### Lagrange interpolation

This example illustrates the use of `InterpLagrange` with at Chebyshev-Gauss-Lobatto grid to interpolate Runge's equation.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_interpolation_lagrange.rs)

Results:

![algo_interpolation_lagrange](data/figures/algo_interpolation_lagrange.svg)



### Solution of a 1D PDE using spectral collocation

This example illustrates the solution of a 1D PDE using the spectral collocation method. It employs the InterpLagrange struct.

```text
dΒ²u     du          x
β€”β€”β€” - 4 β€”β€” + 4 u = e  + C
dxΒ²     dx

    -4 e
C = β€”β€”β€”β€”β€”β€”
    1 + eΒ²

x ∈ [-1, 1]
```

Boundary conditions:

```text
u(-1) = 0  and  u(1) = 0
```

Reference solution:

```text
        x   sinh(1)  2x   C
u(x) = e  - β€”β€”β€”β€”β€”β€”β€” e   + β€”
            sinh(2)       4
```

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_lorene_1d_pde_spectral_collocation.rs)

Results:

![algo_lorene_1d_pde_spectral_collocation](data/figures/algo_lorene_1d_pde_spectral_collocation.svg)



### Numerical integration: perimeter of ellipse

```rust
use russell_lab::algo::Quadrature;
use russell_lab::math::{elliptic_e, PI};
use russell_lab::{approx_eq, StrError};

fn main() -> Result<(), StrError> {
    //  Determine the perimeter P of an ellipse of length 2 and width 1
    //
    //      2Ο€
    //     ⌠   ____________________
    // P = β”‚ \β•± ΒΌ sinΒ²(ΞΈ) + cosΒ²(ΞΈ)  dΞΈ
    //     ⌑
    //    0

    let mut quad = Quadrature::new();
    let args = &mut 0;
    let (perimeter, _) = quad.integrate(0.0, 2.0 * PI, args, |theta, _| {
        Ok(f64::sqrt(
            0.25 * f64::powi(f64::sin(theta), 2) + f64::powi(f64::cos(theta), 2),
        ))
    })?;
    println!("\nperimeter = {}", perimeter);

    // complete elliptic integral of the second kind E(0.75)
    let ee = elliptic_e(PI / 2.0, 0.75)?;

    // reference solution
    let ref_perimeter = 4.0 * ee;
    approx_eq(perimeter, ref_perimeter, 1e-14);
    Ok(())
}
```



### Finding a local minimum and a root

This example finds the local minimum between 0.1 and 0.3 and the root between 0.3 and 0.4 for the function illustrated below

![finding a local minimum](data/figures/test_function_005.svg)

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_min_and_root_solver_brent.rs)

The output looks like:

```text
x_optimal = 0.20000000003467466

Number of function evaluations   = 18
Number of Jacobian evaluations   = 0
Number of iterations             = 18
Error estimate                   = unavailable
Total computation time           = 6.11Β΅s

x_root = 0.3397874957748173

Number of function evaluations   = 10
Number of Jacobian evaluations   = 0
Number of iterations             = 9
Error estimate                   = unavailable
Total computation time           = 907ns
```



### Computing the pseudo-inverse matrix

```rust
use russell_lab::{mat_pseudo_inverse, Matrix, StrError};

fn main() -> Result<(), StrError> {
    // set matrix
    let mut a = Matrix::from(&[
      [1.0, 0.0], //
      [0.0, 1.0], //
      [0.0, 1.0], //
    ]);
    let a_copy = a.clone();

    // compute pseudo-inverse matrix
    let mut ai = Matrix::new(2, 3);
    mat_pseudo_inverse(&mut ai, &mut a)?;

    // compare with solution
    let ai_correct = "β”Œ                ┐\n\
                      β”‚ 1.00 0.00 0.00 β”‚\n\
                      β”‚ 0.00 0.50 0.50 β”‚\n\
                      β””                β”˜";
    assert_eq!(format!("{:.2}", ai), ai_correct);

    // compute a β‹… ai
    let (m, n) = a.dims();
    let mut a_ai = Matrix::new(m, m);
    for i in 0..m {
        for j in 0..m {
            for k in 0..n {
                a_ai.add(i, j, a_copy.get(i, k) * ai.get(k, j));
            }
        }
    }

    // check: a β‹… ai β‹… a = a
    let mut a_ai_a = Matrix::new(m, n);
    for i in 0..m {
        for j in 0..n {
            for k in 0..m {
                a_ai_a.add(i, j, a_ai.get(i, k) * a_copy.get(k, j));
            }
        }
    }
    let a_ai_a_correct = "β”Œ           ┐\n\
                          β”‚ 1.00 0.00 β”‚\n\
                          β”‚ 0.00 1.00 β”‚\n\
                          β”‚ 0.00 1.00 β”‚\n\
                          β””           β”˜";
    assert_eq!(format!("{:.2}", a_ai_a), a_ai_a_correct);
    Ok(())
}
```



### Matrix visualization

We can use the fantastic tool named [vismatrix](https://github.com/cpmech/vismatrix/) to visualize the pattern of non-zero values of a matrix. With `vismatrix`, we can click on each circle and investigate the numeric values as well.

The function `mat_write_vismatrix` writes the input data file for `vismatrix`.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/matrix_visualization.rs)

After generating the "dot-smat" file, run the following command:

```bash
vismatrix /tmp/russell_lab/matrix_visualization.smat
```

Output:

![Matrix visualization](data/figures/matrix_vizualization.png)



### Computing eigenvalues and eigenvectors

```rust
use russell_lab::*;

fn main() -> Result<(), StrError> {
    // set matrix
    let data = [[2.0, 0.0, 0.0], [0.0, 3.0, 4.0], [0.0, 4.0, 9.0]];
    let mut a = Matrix::from(&data);

    // allocate output arrays
    let m = a.nrow();
    let mut l_real = Vector::new(m);
    let mut l_imag = Vector::new(m);
    let mut v_real = Matrix::new(m, m);
    let mut v_imag = Matrix::new(m, m);

    // perform the eigen-decomposition
    mat_eigen(&mut l_real, &mut l_imag, &mut v_real, &mut v_imag, &mut a)?;

    // check results
    assert_eq!(
        format!("{:.1}", l_real),
        "β”Œ      ┐\n\
         β”‚ 11.0 β”‚\n\
         β”‚  1.0 β”‚\n\
         β”‚  2.0 β”‚\n\
         β””      β”˜"
    );
    assert_eq!(
        format!("{}", l_imag),
        "β”Œ   ┐\n\
         β”‚ 0 β”‚\n\
         β”‚ 0 β”‚\n\
         β”‚ 0 β”‚\n\
         β””   β”˜"
    );

    // check eigen-decomposition (similarity transformation) of a
    // symmetric matrix with real-only eigenvalues and eigenvectors
    let a_copy = Matrix::from(&data);
    let lam = Matrix::diagonal(l_real.as_data());
    let mut a_v = Matrix::new(m, m);
    let mut v_l = Matrix::new(m, m);
    let mut err = Matrix::filled(m, m, f64::MAX);
    mat_mat_mul(&mut a_v, 1.0, &a_copy, &v_real, 0.0)?;
    mat_mat_mul(&mut v_l, 1.0, &v_real, &lam, 0.0)?;
    mat_add(&mut err, 1.0, &a_v, -1.0, &v_l)?;
    approx_eq(mat_norm(&err, Norm::Max), 0.0, 1e-15);
    Ok(())
}
```



### Cholesky factorization

```rust
use russell_lab::*;

fn main() -> Result<(), StrError> {
    // set matrix
    let sym = 0.0;
    #[rustfmt::skip]
    let mut a = Matrix::from(&[
        [  4.0,   sym,   sym],
        [ 12.0,  37.0,   sym],
        [-16.0, -43.0,  98.0],
    ]);

    // perform factorization
    mat_cholesky(&mut a, false)?;

    // define alias (for convenience)
    let l = &a;

    // compare with solution
    let l_correct = "β”Œ          ┐\n\
                     β”‚  2  0  0 β”‚\n\
                     β”‚  6  1  0 β”‚\n\
                     β”‚ -8  5  3 β”‚\n\
                     β””          β”˜";
    assert_eq!(format!("{}", l), l_correct);

    // check:  l β‹… lα΅€ = a
    let m = a.nrow();
    let mut l_lt = Matrix::new(m, m);
    for i in 0..m {
        for j in 0..m {
            for k in 0..m {
                l_lt.add(i, j, l.get(i, k) * l.get(j, k));
            }
        }
    }
    let l_lt_correct = "β”Œ             ┐\n\
                        β”‚   4  12 -16 β”‚\n\
                        β”‚  12  37 -43 β”‚\n\
                        β”‚ -16 -43  98 β”‚\n\
                        β””             β”˜";
    assert_eq!(format!("{}", l_lt), l_lt_correct);
    Ok(())
}
```



## About the column major representation

Only the COL-MAJOR representation is considered here.

```text
    β”Œ     ┐  row_major = {0, 3,
    β”‚ 0 3 β”‚               1, 4,
A = β”‚ 1 4 β”‚               2, 5};
    β”‚ 2 5 β”‚
    β””     β”˜  col_major = {0, 1, 2,
    (m Γ— n)               3, 4, 5}

Aα΅’β±Ό = col_major[i + jΒ·m] = row_major[iΒ·n + j]
        ↑
COL-MAJOR IS ADOPTED HERE
```

The main reason to use the **col-major** representation is to make the code work better with BLAS/LAPACK written in Fortran. Although those libraries have functions to handle row-major data, they usually add an overhead due to temporary memory allocation and copies, including transposing matrices. Moreover, the row-major versions of some BLAS/LAPACK libraries produce incorrect results (notably the DSYEV).



## Benchmarks

Need to install:

```bash
cargo install cargo-criterion
```

Run the benchmarks with:

```bash
bash ./zscripts/benchmark.bash
```



### Jacobi Rotation versus LAPACK DSYEV

Comparison of the performances of `mat_eigen_sym_jacobi` (Jacobi rotation) versus `mat_eigen_sym` (calling LAPACK DSYEV).

![Jacobi Rotation versus LAPACK DSYEV (1-5)](data/figures/bench_mat_eigen_sym_1-5.svg)

![Jacobi Rotation versus LAPACK DSYEV (1-32)](data/figures/bench_mat_eigen_sym_1-32.svg)



## Notes for developers

* The `c_code` directory contains a thin wrapper to the BLAS libraries (OpenBLAS or Intel MKL)
* The `c_code` directory also contains a wrapper to the C math functions
* The `build.rs` file uses the crate `cc` to build the C-wrappers