runnx 0.2.0

A minimal, verifiable ONNX runtime implementation in Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
# RunNX

A minimal, **mathematically verifiable** ONNX runtime implementation in Rust.

[![Crates.io](https://img.shields.io/crates/v/runnx.svg)](https://crates.io/crates/runnx)
[![Documentation](https://docs.rs/runnx/badge.svg)](https://docs.rs/runnx)
[![License](https://img.shields.io/badge/license-MIT%20OR%20Apache--2.0-blue.svg)](LICENSE)
[![CI](https://github.com/jgalego/runnx/actions/workflows/ci.yml/badge.svg)](https://github.com/jgalego/runnx/actions/workflows/ci.yml)
[![Formal Verification](https://github.com/jgalego/runnx/actions/workflows/formal-verification.yml/badge.svg)](https://github.com/jgalego/runnx/actions/workflows/formal-verification.yml)
[![codecov](https://codecov.io/gh/jgalego/runnx/branch/main/graph/badge.svg)](https://codecov.io/gh/jgalego/runnx)

![RunNX](assets/runnx.jpg)

## Overview

> Fast, fearless, and **formally verified** ONNX in Rust.

This project provides a minimal, educational ONNX runtime implementation focused on:
- **Simplicity**: Easy to understand and modify
- **Verifiability**: **Formal mathematical verification** using Why3 and property-based testing
- **Performance**: Efficient operations using ndarray
- **Safety**: Memory-safe Rust implementation with mathematical guarantees

## Features

- ✅ Dual Format Support: JSON and binary ONNX protobuf formats
- ✅ Auto-detection: Automatic format detection based on file extension
-**Graph Visualization**: Beautiful terminal ASCII art and professional Graphviz export
  - Terminal visualization with dynamic layout and rich formatting
  - DOT format export for publication-quality diagrams (PNG, SVG, PDF)
  - CLI integration with `--graph` and `--dot` options
  - Topological sorting and cycle detection
- ✅ Basic tensor operations (`Add`, `Mul`, `MatMul`, `Conv`, `Relu`, `Sigmoid`, `Reshape`, `Transpose`)
-**YOLO Model Support**: Essential operators for YOLO object detection models
  - `Concat`: Tensor concatenation for feature fusion
  - `Slice`: Tensor slicing operations
  - `Upsample`: Feature map upsampling for FPN
  - `MaxPool`: Max pooling operations
  - `Softmax`: Classification probability computation
  - `NonMaxSuppression`: Object detection post-processing
- ✅ Formal mathematical specifications with Why3
- ✅ Property-based testing for mathematical correctness
- ✅ Runtime invariant verification
- ✅ Model loading and validation  
- ✅ Inference execution
- ✅ Error handling and logging
- ✅ Benchmarking support
- ✅ Async support (optional)
- ✅ Command-line runner
- ✅ Comprehensive examples

## Quick Start

### Prerequisites

RunNX requires the Protocol Buffers compiler (`protoc`) to build:

```bash
# Ubuntu/Debian
sudo apt-get install protobuf-compiler

# macOS  
brew install protobuf

# Windows
choco install protoc
```

### Installation

Add this to your `Cargo.toml`:

```toml
[dependencies]
runnx = "0.2.0"
```

### Basic Usage

```rust
use runnx::{Model, Tensor};

// Load a model (supports both JSON and ONNX binary formats)  
let model = Model::from_file("model.onnx")?;  // Auto-detects format
// Or explicitly:
// let model = Model::from_onnx_file("model.onnx")?;  // Binary ONNX
// let model = Model::from_json_file("model.json")?;  // JSON format

// Create input tensor
let input = Tensor::from_array(ndarray::array![[1.0, 2.0, 3.0]]);

// Run inference
let outputs = model.run(&[("input", input)])?;

// Get results
let result = outputs.get("output").unwrap();
println!("Result: {:?}", result.data());
```

### Saving Models

```rust
use runnx::Model;

let model = /* ... create or load model ... */;

// Save in different formats
model.to_file("output.onnx")?;    // Auto-detects format from extension  
model.to_onnx_file("binary.onnx")?;  // Explicit binary ONNX format
model.to_json_file("readable.json")?;  // Explicit JSON format
```

### Command Line Usage

```bash
# Run inference on a model (supports both .onnx and .json files)
cargo run --bin runnx-runner -- --model model.onnx --input input.json
cargo run --bin runnx-runner -- --model model.json --input input.json

# Show model summary and graph visualization
cargo run --bin runnx-runner -- --model model.onnx --summary --graph

# Generate Graphviz DOT file for professional diagrams
cargo run --bin runnx-runner -- --model model.onnx --dot graph.dot

# Run with async support
cargo run --features async --bin runnx-runner -- --model model.onnx --input input.json
```

## Graph Visualization

RunNX provides comprehensive graph visualization capabilities to help you understand and debug ONNX model structures. You can visualize models both in the terminal and as publication-quality graphics.

### Terminal Visualization

Display beautiful ASCII art representations of your model directly in the terminal:

```bash
# Show visual graph representation
./target/debug/runnx-runner --model model.onnx --graph

# Show both model summary and graph
./target/debug/runnx-runner --model model.onnx --summary --graph
```

#### Example Output

Here's what the terminal visualization looks like for a complex neural network:

```
┌────────────────────────────────────────┐
│       GRAPH: neural_network_demo       │
└────────────────────────────────────────┘

📥 INPUTS:
   ┌─ image_input [1 × 3 × 224 × 224] (float32)
   ┌─ mask_input [1 × 1 × 224 × 224] (float32)

⚙️  INITIALIZERS:
   ┌─ conv1_weight [64 × 3 × 7 × 7]
   ┌─ conv1_bias [64]
   ┌─ fc_weight [1000 × 512]
   ┌─ fc_bias [1000]

🔄 COMPUTATION FLOW:
   │
   ├─ Step 1: conv1
   │  ┌─ Operation: Conv
   │  ├─ Inputs:
   │  │  └─ image_input
   │  │  └─ conv1_weight
   │  │  └─ conv1_bias
   │  ├─ Outputs:
   │  │  └─ conv1_output
   │  └─ Attributes:
   │     └─ kernel_shape: [7, 7]
   │     └─ strides: [2, 2]
   │     └─ pads: [3, 3, 3, 3]
   │
   ├─ Step 2: relu1
   │  ┌─ Operation: Relu
   │  ├─ Inputs:
   │  │  └─ conv1_output
   │  ├─ Outputs:
   │  │  └─ relu1_output
   │  └─ (no attributes)
   
   [... more steps ...]

📤 OUTPUTS:
   └─ classification [1 × 1000] (float32)
   └─ segmentation [1 × 21 × 224 × 224] (float32)

📊 STATISTICS:
   ├─ Total nodes: 10
   ├─ Input tensors: 2
   ├─ Output tensors: 2
   └─ Initializers: 4

🎯 OPERATION SUMMARY:
   ├─ Add: 1
   ├─ Conv: 2
   ├─ Flatten: 1
   ├─ GlobalAveragePool: 1
   ├─ MatMul: 1
   ├─ MaxPool: 1
   ├─ Mul: 1
   ├─ Relu: 1
   └─ Upsample: 1
```

### Graphviz Export

Generate professional diagrams using DOT format for Graphviz:

```bash
# Generate DOT file for Graphviz
./target/debug/runnx-runner --model model.onnx --dot graph.dot

# Convert to PNG (requires Graphviz installation)
dot -Tpng graph.dot -o graph.png

# Convert to SVG for vector graphics
dot -Tsvg graph.dot -o graph.svg

# Convert to PDF for documents
dot -Tpdf graph.dot -o graph.pdf
```

#### Example Graph Output

The DOT format generates clean, professional diagrams with:
- **Green ellipses** for input tensors
- **Blue diamonds** for initializers (weights/biases)  
- **Rectangular boxes** for operations
- **Red ellipses** for output tensors
- **Directed arrows** showing data flow

![Complex Neural Network Graph](assets/complex_graph.png)

*Example: Multi-task neural network with classification and segmentation branches*

#### DOT Format Output

The generated DOT file contains structured graph data that Graphviz uses to create the visualizations. Here's an excerpt of the DOT format:

```dot
digraph G {
  rankdir=TB;
  node [shape=box, style=rounded];

  "image_input" [shape=ellipse, color=green, label="image_input"];
  "mask_input" [shape=ellipse, color=green, label="mask_input"];
  "conv1_weight" [shape=diamond, color=blue, label="conv1_weight"];
  "conv1_bias" [shape=diamond, color=blue, label="conv1_bias"];
  "conv1" [label="conv1\n(Conv)"];
  "relu1" [label="relu1\n(Relu)"];
  "classification" [shape=ellipse, color=red, label="classification"];
  "segmentation" [shape=ellipse, color=red, label="segmentation"];

  "image_input" -> "conv1";
  "conv1_weight" -> "conv1";
  "conv1_bias" -> "conv1";
  "conv1" -> "relu1";
  "relu1" -> "classification";
  // ... additional connections
}
```

The DOT format uses:
- **Nodes**: Define graph elements with shapes, colors, and labels
- **Edges**: Define connections with `->` arrows
- **Attributes**: Control visual appearance and layout
- **rankdir=TB**: Top-to-bottom layout direction

For the complete DOT file example, see [`assets/complex_graph.dot`](assets/complex_graph.dot).

### Programmatic Usage

You can also generate visualizations programmatically:

```rust
use runnx::Model;

let model = Model::from_file("model.onnx")?;

// Print graph to terminal
model.print_graph();

// Generate DOT format
let dot_content = model.to_dot();
std::fs::write("graph.dot", dot_content)?;

// The graph name box automatically adjusts to any length
// Works with short names like "CNN" or very long names like
// "SuperLongComplexNeuralNetworkGraphName"
```

### Features

- **Dynamic Layout**: Graph title box automatically adjusts to accommodate any name length
- **Topological Sorting**: Shows correct execution order with dependency resolution
- **Cycle Detection**: Gracefully handles graphs with cycles  
- **Rich Information**: Displays shapes, data types, attributes, and statistics
- **Color Coding**: Visual distinction between different node types in DOT format
- **Multiple Formats**: Terminal ASCII art and Graphviz-compatible DOT export
- **Professional Quality**: Publication-ready graphics for papers and presentations

## Architecture

The runtime is organized into several key components:

### Core Components

- **Model**: ONNX model representation and loading
- **Graph**: Computational graph with nodes and edges
- **Tensor**: N-dimensional array wrapper with type safety
- **Operators**: Implementation of ONNX operations
- **Runtime**: Execution engine with optimizations

### File Format Support

RunNX supports both JSON and binary ONNX protobuf formats:

#### 📄 JSON Format
- **Human-readable**: Easy to inspect and debug
- **Text-based**: Can be viewed and edited in any text editor
- **Larger file size**: More verbose due to text representation
- **Extension**: `.json`

#### 🔧 Binary ONNX Format  
- **Standard format**: Official ONNX protobuf serialization
- **Compact**: Smaller file sizes due to binary encoding
- **Interoperable**: Compatible with other ONNX runtime implementations
- **Extension**: `.onnx`

#### 🎯 Auto-Detection
The `Model::from_file()` method automatically detects the format based on file extension:
- `.onnx` files → Binary ONNX protobuf format
- `.json` files → JSON format  
- Other extensions → Attempts JSON parsing as fallback

For explicit control, use:
- `Model::from_onnx_file()` for binary ONNX files
- `Model::from_json_file()` for JSON files

### Supported Operators

#### Basic Operators
| Operator      | Status   | Notes                       |
| ------------- | -------- | --------------------------- |
| `Add`         || Element-wise addition        |
| `Mul`         || Element-wise multiplication  |
| `MatMul`      || Matrix multiplication        |
| `Conv`        || 2D Convolution               |
| `Relu`        || Rectified Linear Unit        |
| `Sigmoid`     || Sigmoid activation           |
| `Reshape`     || Tensor reshaping             |
| `Transpose`   || Tensor transposition         |

#### YOLO-Specific Operators
| Operator             | Status   | Notes                                |
| -------------------- | -------- | ------------------------------------ |
| `Concat`             || Tensor concatenation for FPN         |
| `Slice`              | 🚧      | Tensor slicing (simplified)          |
| `Upsample`           | 🚧      | Feature upsampling (simplified)      |
| `MaxPool`            | 🚧      | Max pooling (simplified)             |
| `Softmax`            || Classification probabilities         |
| `NonMaxSuppression`  | 🚧      | NMS for detection (simplified)       |

*Legend: ✅ = Fully implemented, 🚧 = Simplified implementation, ❌ = Not implemented*

## Examples

### Format Compatibility Demo

```rust
use runnx::*;

fn main() -> runnx::Result<()> {
    // Create a simple model
    let mut graph = graph::Graph::new("demo_graph".to_string());
    
    // Add input/output specifications
    let input_spec = graph::TensorSpec::new("input".to_string(), vec![Some(1), Some(4)]);
    let output_spec = graph::TensorSpec::new("output".to_string(), vec![Some(1), Some(4)]);
    graph.add_input(input_spec);
    graph.add_output(output_spec);
    
    // Add a ReLU node
    let relu_node = graph::Node::new(
        "relu_1".to_string(),
        "Relu".to_string(), 
        vec!["input".to_string()],
        vec!["output".to_string()],
    );
    graph.add_node(relu_node);
    
    let model = model::Model::with_metadata(
        model::ModelMetadata {
            name: "demo_model".to_string(),
            version: "1.0".to_string(),
            description: "A simple ReLU demo model".to_string(),
            producer: "RunNX Demo".to_string(),
            onnx_version: "1.9.0".to_string(),
            domain: "".to_string(),
        },
        graph,
    );

    // Save in both formats
    model.to_json_file("demo_model.json")?;
    model.to_onnx_file("demo_model.onnx")?;
    
    // Load from both formats
    let json_model = model::Model::from_json_file("demo_model.json")?;
    let onnx_model = model::Model::from_onnx_file("demo_model.onnx")?;
    
    // Auto-detection also works
    let auto_json = model::Model::from_file("demo_model.json")?;
    let auto_onnx = model::Model::from_file("demo_model.onnx")?;
    
    println!("✅ All formats loaded successfully!");
    println!("Original: {}", model.name());
    println!("JSON: {}", json_model.name());
    println!("ONNX: {}", onnx_model.name());
    
    Ok(())
}
```

### Simple Linear Model

```rust
use runnx::{Model, Tensor};
use ndarray::Array2;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize logging
    env_logger::init();

    // Create a simple linear transformation: y = x * w + b
    let weights = Array2::from_shape_vec((3, 2), vec![0.5, 0.3, 0.2, 0.4, 0.1, 0.6])?;
    let bias = Array2::from_shape_vec((1, 2), vec![0.1, 0.2])?;
    
    let input = Tensor::from_array(Array2::from_shape_vec((1, 3), vec![1.0, 2.0, 3.0])?);
    let w_tensor = Tensor::from_array(weights);
    let b_tensor = Tensor::from_array(bias);
    
    // Manual computation for verification
    let result1 = input.matmul(&w_tensor)?;
    let result2 = result1.add(&b_tensor)?;
    
    println!("Linear transformation result: {:?}", result2.data());
    Ok(())
}
```

### Model Loading and Inference

```bash
# Format compatibility demonstration
cargo run --example onnx_demo

# YOLO operator support demonstration
cargo run --example yolo_demo

# YOLOv8n compatibility testing
cargo run --example yolov8n_compat_demo

# Format conversion between JSON and ONNX binary
cargo run --example format_conversion

# Simple model operations
cargo run --example simple_model

# Formal verification examples
cargo run --example formal_verification

# Tensor operations
cargo run --example tensor_ops
```

### YOLO Model Support

RunNX now includes essential operators for YOLO-style object detection models:

```rust
use runnx::*;

fn main() -> runnx::Result<()> {
    // Create a YOLO-like model structure
    let mut graph = graph::Graph::new("yolo_demo".to_string());
    
    // Input: RGB image [1, 3, 640, 640]
    let input_spec = graph::TensorSpec::new(
        "images".to_string(), 
        vec![Some(1), Some(3), Some(640), Some(640)]
    );
    graph.add_input(input_spec);
    
    // Output: Detections [1, 25200, 85] (COCO: 80 classes + 4 coords + 1 conf)
    let output_spec = graph::TensorSpec::new(
        "detections".to_string(), 
        vec![Some(1), Some(25200), Some(85)]
    );
    graph.add_output(output_spec);
    
    // Add YOLO-essential nodes
    let backbone_conv = graph::Node::new(
        "backbone_conv".to_string(),
        "Conv".to_string(),
        vec!["images".to_string()],
        vec!["features".to_string()],
    );
    graph.add_node(backbone_conv);
    
    // SiLU activation (Sigmoid * x)
    let silu_sigmoid = graph::Node::new(
        "silu_sigmoid".to_string(),
        "Sigmoid".to_string(),
        vec!["features".to_string()],
        vec!["sigmoid_out".to_string()],
    );
    let silu_mul = graph::Node::new(
        "silu_mul".to_string(),
        "Mul".to_string(),
        vec!["features".to_string(), "sigmoid_out".to_string()],
        vec!["silu_out".to_string()],
    );
    graph.add_node(silu_sigmoid);
    graph.add_node(silu_mul);
    
    // Multi-scale feature processing
    let upsample = graph::Node::new(
        "upsample".to_string(),
        "Upsample".to_string(),
        vec!["silu_out".to_string()],
        vec!["upsampled".to_string()],
    );
    let concat = graph::Node::new(
        "concat".to_string(),
        "Concat".to_string(),
        vec!["upsampled".to_string(), "silu_out".to_string()],
        vec!["concat_out".to_string()],
    );
    graph.add_node(upsample);
    graph.add_node(concat);
    
    // Detection head with Softmax
    let head_conv = graph::Node::new(
        "head_conv".to_string(),
        "Conv".to_string(),
        vec!["concat_out".to_string()],
        vec!["raw_detections".to_string()],
    );
    let softmax = graph::Node::new(
        "softmax".to_string(),
        "Softmax".to_string(),
        vec!["raw_detections".to_string()],
        vec!["detections".to_string()],
    );
    graph.add_node(head_conv);
    graph.add_node(softmax);
    
    let model = model::Model::with_metadata(
        model::ModelMetadata {
            name: "yolo_demo_v1".to_string(),
            version: "1.0".to_string(),
            description: "YOLO-like object detection model".to_string(),
            producer: "RunNX YOLO Demo".to_string(),
            onnx_version: "1.9.0".to_string(),
            domain: "".to_string(),
        },
        graph,
    );
    
    println!("🎯 YOLO Model Created!");
    println!("   Inputs: {} ({})", model.graph.inputs.len(), model.graph.inputs[0].name);
    println!("   Outputs: {} ({})", model.graph.outputs.len(), model.graph.outputs[0].name);
    println!("   Nodes: {} (Conv, SiLU, Upsample, Concat, Softmax)", model.graph.nodes.len());
    
    Ok(())
}
```

### Basic Model Loading

```rust
use runnx::{Model, Tensor};
use std::collections::HashMap;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Load model from file
    let model = Model::from_file("path/to/model.onnx")?;
    
    // Print model information
    println!("Model: {}", model.name());
    println!("Inputs: {:?}", model.input_names());
    println!("Outputs: {:?}", model.output_names());
    
    // Prepare inputs
    let mut inputs = HashMap::new();
    inputs.insert("input", Tensor::zeros(&[1, 3, 224, 224]));
    
    // Run inference
    let outputs = model.run(&inputs)?;
    
    // Process outputs
    for (name, tensor) in outputs {
        println!("Output '{}': shape {:?}", name, tensor.shape());
    }
    
    Ok(())
}
```

## Performance

The runtime includes benchmarking capabilities:

```bash
# Run benchmarks
cargo bench

# Generate HTML reports
cargo bench -- --output-format html
```

Example benchmark results:
- Basic operations: ~10-50 µs
- Small model inference: ~100-500 µs
- Medium model inference: ~1-10 ms

## Formal Verification

RunNX includes comprehensive formal verification capabilities to ensure mathematical correctness:

### 🔬 Mathematical Specifications

The runtime includes formal specifications for all tensor operations using Why3:

```why3
(** Addition operation specification *)
function add_spec (a b: tensor) : tensor
  requires { valid_tensor a /\ valid_tensor b }
  requires { a.shape = b.shape }
  ensures  { valid_tensor result }
  ensures  { result.shape = a.shape }
  ensures  { forall i. 0 <= i < length result.data ->
             result.data[i] = a.data[i] + b.data[i] }
```

### 🧪 Property-Based Testing

Automatic verification of mathematical properties:

```rust
use runnx::formal::contracts::{AdditionContracts, ActivationContracts, YoloOperatorContracts};

// Test addition commutativity: a + b = b + a
let result1 = tensor_a.add_with_contracts(&tensor_b)?;
let result2 = tensor_b.add_with_contracts(&tensor_a)?;
assert_eq!(result1.data(), result2.data());

// Test ReLU idempotency: ReLU(ReLU(x)) = ReLU(x)  
let relu_once = tensor.relu_with_contracts()?;
let relu_twice = relu_once.relu_with_contracts()?;
assert_eq!(relu_once.data(), relu_twice.data());

// Test Softmax probability distribution: sum = 1.0
let softmax_result = tensor.softmax_with_contracts()?;
let sum: f32 = softmax_result.data().iter().sum();
assert!((sum - 1.0).abs() < 1e-6);
```

### 🔍 Runtime Verification

Dynamic checking of invariants during execution:

```rust
use runnx::formal::runtime_verification::InvariantMonitor;

let monitor = InvariantMonitor::new();
let result = tensor.add(&other)?;

// Verify numerical stability and bounds
assert!(monitor.verify_operation(&[&tensor, &other], &[&result]));
```

### 🎯 Verified Properties

The formal verification system proves:

- **Addition**: Commutativity, associativity, identity
- **Matrix Multiplication**: Associativity, distributivity  
- **ReLU**: Idempotency, monotonicity, non-negativity
- **Sigmoid**: Boundedness (0, 1), monotonicity, symmetry
- **Numerical Stability**: Overflow/underflow prevention

### 📊 Running Formal Verification

```bash
# Install Why3 (optional, for complete formal proofs)
make -C formal install-why3

# Run all verification (tests + proofs)
make -C formal all

# Run only property-based tests (no Why3 required)
cargo test formal --lib

# Run verification example
cargo run --example formal_verification

# Generate verification report  
make -C formal report
```

## Development

### Quick Development with Justfile

RunNX includes a [Justfile](justfile) with convenient shortcuts for common development tasks:

```bash
# Install just command runner (one time setup)
cargo install just

# Show all available commands
just --list

# Quick development cycle
just dev          # Format, lint, and test
just test         # Run all tests
just build        # Build the project
just examples     # Run all examples

# Code quality
just format       # Format code
just lint         # Run clippy
just quality      # Run quality check script

# Documentation  
just docs-open    # Build and open docs

# Benchmarks
just bench        # Run benchmarks

# Formal verification
just formal-test  # Test formal verification setup

# CI simulation
just ci          # Simulate CI checks locally
```

**Alternatively**, if you don't have `just` installed, use the included shell script:

```bash
# Show all available commands
./dev.sh help

# Quick development cycle
./dev.sh dev      # Format, lint, and test
./dev.sh test     # Run all tests  
./dev.sh examples # Run all examples
```

### Running Tests

```bash
# Run all tests
cargo test
# or with just
just test

# Run tests with logging
RUST_LOG=debug cargo test

# Run specific test
cargo test test_tensor_operations
```

### Building Documentation

```bash
# Build and open documentation
cargo doc --open
# or with just  
just docs-open

# Build with private items
cargo doc --document-private-items
```

### Contributing

We welcome contributions! Please follow our development quality standards:

1. Fork the repository
2. Create a feature branch
3. Make your changes following our [Development QA Guidelines]docs/DEVELOPMENT_QA.md
4. Add tests and documentation
5. Run quality checks: `./scripts/quality-check.sh`
6. Commit your changes (pre-commit hooks will run automatically)
7. Submit a pull request

#### Development Quality Assurance

RunNX uses automated quality assurance tools to maintain code quality:

- **Pre-commit hooks**: Automatically run formatting, linting, and tests before each commit
- **Code formatting**: Consistent style enforced by `rustfmt`
- **Linting**: Comprehensive checks with `clippy` (warnings treated as errors)
- **Comprehensive testing**: Unit tests, integration tests, property-based tests, and doc tests
- **Build verification**: Ensures all code compiles successfully

For detailed information, see [Development QA Guidelines](docs/DEVELOPMENT_QA.md).

To run quality checks manually:
```bash
# Run all quality checks with auto-fixes
./scripts/quality-check.sh

# Or run individual checks
cargo fmt           # Format code
cargo clippy        # Run linting
cargo test          # Run all tests
```

## License

This project is licensed under

* Apache License, Version 2.0, ([LICENSE-APACHE]LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
* MIT license ([LICENSE-MIT]LICENSE-MIT or http://opensource.org/licenses/MIT)


## Acknowledgments

- [ONNX]https://onnx.ai/ - Open Neural Network Exchange format
- [ndarray]https://github.com/rust-ndarray/ndarray - Rust's `ndarray` library
- [Candle]https://github.com/huggingface/candle - Inspiration for some design patterns

## Roadmap

### ✅ Completed
- [x] **Dual Format Support**: Both JSON and binary ONNX protobuf formats
- [x] **Auto-detection**: Automatic format detection based on file extension  
- [x] **Graph Visualization**: Terminal ASCII art and professional Graphviz export
- [x] **Core Operators**: Add, Mul, MatMul, Conv, ReLU, Sigmoid, Reshape, Transpose
- [x] **YOLO Operators**: Concat, Slice, Upsample, MaxPool, Softmax, NonMaxSuppression
- [x] **Formal Verification**: Mathematical specifications with Why3
- [x] **CLI Tool**: Command-line runner with visualization capabilities

### 🚧 Planned
- [ ] Add more operators (BatchNorm, LayerNorm, etc.)
- [ ] GPU acceleration support
- [ ] Quantization support
- [ ] Model optimization passes
- [ ] WASM compilation target
- [ ] Python bindings

## Documentation

### 📚 Additional Resources

- **[Release Notes]RELEASE_NOTES_0.2.0.md** - What's new in the latest version
- **[Complete Changelog]CHANGELOG.md** - Full history of changes
- **[Release History]docs/releases/** - All previous release notes
- **[Contributing Guide]CONTRIBUTING.md** - How to contribute to RunNX
- **[Development QA]docs/DEVELOPMENT_QA.md** - Quality assurance guidelines
- **[Formal Verification]FORMAL_VERIFICATION.md** - Mathematical verification details

### 🔗 External Links

- **[API Documentation]https://docs.rs/runnx** - Complete API reference
- **[Crates.io]https://crates.io/crates/runnx** - Package information
- **[GitHub Repository]https://github.com/JGalego/runnx** - Source code and issues
- **[CI/CD Status]https://github.com/JGalego/runnx/actions** - Build and test results