runmat 0.2.7

High-performance MATLAB/Octave runtime with Jupyter kernel support
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# 🚀 RunMat: The fastest runtime for your math
### RunMat automatically **fuses operations and intelligently routes between CPU and GPU**. MATLAB syntax. No kernel code, no rewrites.

[![Build Status](https://img.shields.io/github/actions/workflow/status/runmat-org/runmat/ci.yml?branch=main)](https://github.com/runmat-org/runmat/actions)
[![License](https://img.shields.io/badge/license-MIT%20with%20Attribution-blue.svg)](LICENSE.md)
[![Crates.io](https://img.shields.io/crates/v/runmat.svg)](https://crates.io/crates/runmat)
[![Downloads](https://img.shields.io/crates/d/runmat.svg)](https://crates.io/crates/runmat)

**[🌐 Website](https://runmat.org) • [📖 Documentation](https://runmat.org/docs)**

---

### **Status: Pre-release (v0.2)**
RunMat is an early build. The core runtime and GPU engine already pass thousands of tests, but some plotting features are still missing or buggy. Expect a few rough edges. Feedback and bug reports help us decide what to fix next.

---

## What is RunMat?

With RunMat you write your math in clean, readable MATLAB-style syntax. RunMat automatically fuses your operations into optimized kernels and runs them on the best place — CPU or GPU. On GPU, it can often match or beat hand-tuned CUDA on many dense numerical workloads

It runs on whatever GPU you have — NVIDIA, AMD, Apple Silicon, Intel — through native APIs (Metal / DirectX 12 / Vulkan). No device management. No vendor lock-in. No rewrites.

Core ideas:

- **MATLAB syntax, not a new language**  
- **Fast on CPU and GPU**, with one runtime  
- **No device flags** — Fusion automatically chooses CPU vs GPU based on data size and transfer cost heuristics

## ✨ Features at a glance

- **MATLAB language**

  - Familiar `.m` files, arrays, control flow  
  - Many MATLAB / Octave scripts run with few or no changes  

- **Fusion: automatic CPU+GPU choice**

  - Builds an internal graph of array ops  
  - Fuses elementwise ops and reductions into bigger kernels  
  - Chooses CPU or GPU per kernel based on shape and transfer cost  
  - Keeps arrays on device when that is faster  

- **Modern CPU runtime**

  - Ignition interpreter for fast startup  
  - Turbine JIT (Cranelift) for hot paths  
  - Generational GC tuned for numeric code  
  - Memory-safe by design (Rust)

- **Cross-platform GPU backend**

  - Uses wgpu / WebGPU  
  - Supports **Metal (macOS), DirectX 12 (Windows), Vulkan (Linux)**  
  - Falls back to CPU when workloads are too small for GPU to win  

- **Plotting and tooling (pre-release)**

  - Simple 2D line and scatter plots work today  
  - Plots that use filled shapes or meshes (box plots, violin plots, surfaces, many 3D views) are **not wired up yet**  
  - 3D plots and better camera controls are **on the roadmap**  
  - VS Code / Cursor extensions are also **on the roadmap**  


- **Open source**

  - MIT License with attribution  
  - Small binary, CLI-first design 

--- 

## 📊 Performance highlights

These are large workloads where **Fusion chooses GPU**.  
Hardware: **Apple M2 Max**, **Metal**, each point is the mean of 3 runs.




### 4K Image Pipeline Perf Sweep (B = batch size)
| B | RunMat (ms) | PyTorch (ms) | NumPy (ms) | NumPy ÷ RunMat | PyTorch ÷ RunMat |
|---|---:|---:|---:|---:|---:|
| 4  | 142.97 | 801.29 | 500.34 | 3.50× | 5.60× |
| 8  | 212.77 | 808.92 | 939.27 | 4.41× | 3.80× |
| 16 | 241.56 | 907.73 | 1783.47 | 7.38× | 3.76× |
| 32 | 389.25 | 1141.92 | 3605.95 | 9.26× | 2.93× |
| 64 | 683.54 | 1203.20 | 6958.28 | 10.18× | 1.76× |


![4K image pipeline speedup](https://web.runmatstatic.com/4k-image-processing_speedup-b.svg)

### Monte Carlo Perf Sweep 
| Paths (simulations) | RunMat (ms) | PyTorch (ms) | NumPy (ms) | NumPy ÷ RunMat | PyTorch ÷ RunMat |
|--------------------:|-----------:|-------------:|-----------:|---------------:|-----------------:|
| 250k   | 108.58 |   824.42 |  4,065.87 | 37.44× | 7.59× |
| 500k   | 136.10 |   900.11 |  8,206.56 | 60.30× | 6.61× |
| 1M     | 188.00 |   894.32 | 16,092.49 | 85.60× | 4.76× |
| 2M     | 297.65 | 1,108.80 | 32,304.64 |108.53× | 3.73× |
| 5M     | 607.36 | 1,697.59 | 79,894.98 |131.55× | 2.80× |



![Monte Carlo speedup](https://web.runmatstatic.com/monte-carlo-analysis_speedup-b.svg)

### Elementwise Math Perf Sweep (points)
| points | RunMat (ms) | PyTorch (ms) | NumPy (ms) | NumPy ÷ RunMat | PyTorch ÷ RunMat |
|---|---:|---:|---:|---:|---:|
| 1M   | 145.15 | 856.41  |   72.39 | 0.50× | 5.90× |
| 2M   | 149.75 | 901.05  |   79.49 | 0.53× | 6.02× |
| 5M   | 145.14 | 1111.16 |  119.45 | 0.82× | 7.66× |
| 10M  | 143.39 | 1377.43 |  154.38 | 1.08× | 9.61× |
| 100M | 144.81 | 16,404.22 | 1,073.09 | 7.41× | 113.28× |
| 200M | 156.94 | 16,558.98 | 2,114.66 | 13.47× | 105.51× |
| 500M | 137.58 | 17,882.11 | 5,026.94 | 36.54× | 129.97× |
| 1B | 144.40 | 20,841.42 | 11,931.93 | 82.63× | 144.34× |

![Elementwise math speedup](https://web.runmatstatic.com/elementwise-math_speedup-b.svg)

On smaller arrays Fusion keeps work on CPU so you still get low overhead and a fast JIT. 

*Benchmarks run on Apple M2 Max with BLAS/LAPACK optimization and GPU acceleration. See [benchmarks/](benchmarks/) for reproducible test scripts, detailed results, and comparisons against NumPy, PyTorch, and Julia.*


---



## 🎯 Quick Start

### Installation

```bash
# Quick install (Linux/macOS)
curl -fsSL https://runmat.org/install.sh | sh

# Quick install (Windows PowerShell)
iwr https://runmat.org/install.ps1 | iex

# Or install from crates.io
cargo install runmat --features gui

# Or build from source
git clone https://github.com/runmat-org/runmat.git
cd runmat && cargo build --release --features gui
```

#### Linux prerequisite

For BLAS/LAPACK acceleration on Linux, install the system OpenBLAS package before building:

```bash
sudo apt-get update && sudo apt-get install -y libopenblas-dev
```

### Run Your First Script

```bash
# Start the interactive REPL
runmat

# Or run an existing .m file
runmat script.m

# Or pipe a script into RunMat
echo "a = 10; b = 20; c = a + b" | runmat

# Check GPU acceleration status
runmat accel-info

# Benchmark a script
runmat benchmark script.m --iterations 5 --jit

# View system information
runmat info
```

### Jupyter Integration

```bash
# Register RunMat as a Jupyter kernel
runmat --install-kernel

# Launch JupyterLab with RunMat support
jupyter lab
```

### GPU-Accelerated Example

```matlab
% RunMat automatically uses GPU when beneficial
x = rand(10000, 1, 'single');
y = sin(x) .* x + 0.5;  % Automatically fused and GPU-accelerated
mean(y)  % Result computed on GPU
```

## 🌟 See It In Action

### MATLAB Compatibility
```matlab
% Your existing MATLAB code just works
A = [1 2 3; 4 5 6; 7 8 9];
B = A' * A;
eigenvals = eig(B);
plot(eigenvals);
```

### GPU-Accelerated Fusion
```matlab
% RunMat automatically fuses this chain into a single GPU kernel
% No kernel code, no rewrites—just MATLAB syntax
x = rand(1024, 1, 'single');
y = sin(x) .* x + 0.5;        % Fused: sin, multiply, add
m = mean(y, 'all');            % Reduction stays on GPU
fprintf('m=%.6f\n', double(m)); % Single download at sink
```

### Plotting
```matlab
% Simple 2D line plot (works in the pre-release)
x = linspace(0, 2*pi, 1000);
y = sin(x);

plot(x, y);
grid on;
title("Sine wave");
```

---

## 🧱 Architecture: CPU+GPU performance

RunMat uses a tiered CPU runtime plus a fusion engine that automatically picks CPU or GPU for each chunk of math.

### Key components

| Component              | Purpose                                  | Technology / Notes                                                  |
| ---------------------- | ---------------------------------------- | ------------------------------------------------------------------- |
| ⚙️ runmat-ignition   | Baseline interpreter for instant startup | HIR → bytecode compiler, stack-based interpreter                    |
| ⚡ runmat-turbine     | Optimizing JIT for hot code              | Cranelift backend, tuned for numeric workloads                      |
| 🧠 runmat-gc         | High-performance memory management       | Generational GC with pointer compression                            |
| 🚀 runmat-accelerate | GPU acceleration subsystem               | Fusion engine + auto-offload planner + `wgpu` backend               |
| 🔥 Fusion engine       | Collapses op chains, chooses CPU vs GPU  | Builds op graph, fuses ops, estimates cost, keeps tensors on device |
| 🎨 runmat-plot       | Plotting layer (pre-release)                          | 2D line/scatter plots work today; 3D, filled shapes, and full GPU plotting are on the roadmap |
| 📸 runmat-snapshot   | Fast startup snapshots                   | Binary blob serialization / restore                                 |
| 🧰 runmat-runtime    | Core runtime + 200+ builtin functions    | BLAS/LAPACK integration and other CPU/GPU-accelerated operations    |


### Why this matters

- **Tiered CPU execution** gives quick startup and strong single-machine performance.  
- **Fusion engine** removes most manual device management and kernel tuning.  
- **GPU backend** runs on NVIDIA, AMD, Apple Silicon, and Intel through Metal / DirectX 12 / Vulkan, with no vendor lock-in.



## 🚀 GPU Acceleration: Fusion & Auto-Offload

RunMat automatically accelerates your MATLAB code on GPUs without requiring kernel code or rewrites. The system works through four stages:

### 1. Capture the Math
RunMat builds an "acceleration graph" that captures the intent of your operations—shapes, operation categories, dependencies, and constants. This graph provides a complete view of what your script computes.

### 2. Decide What Should Run on GPU
The fusion engine detects long chains of elementwise operations and linked reductions, planning to execute them as combined GPU programs. The auto-offload planner estimates break-even points and routes work intelligently:
- **Fusion detection**: Combines multiple operations into single GPU dispatches
- **Auto-offload heuristics**: Considers element counts, reduction sizes, and matrix multiply saturation
- **Residency awareness**: Keeps tensors on device once they're worth it

### 3. Generate GPU Kernels
RunMat generates portable WGSL (WebGPU Shading Language) kernels that work across platforms:
- **Metal** on macOS
- **DirectX 12** on Windows  
- **Vulkan** on Linux

Kernels are compiled once and cached for subsequent runs, eliminating recompilation overhead.

### 4. Execute Efficiently
The runtime minimizes host↔device transfers by:
- Uploading tensors once and keeping them resident
- Executing fused kernels directly on GPU memory
- Only gathering results when needed (e.g., for `fprintf` or display)

### Example: Automatic GPU Fusion

```matlab
% This code automatically fuses into a single GPU kernel
x = rand(1024, 1, 'single');
y = sin(x) .* x + 0.5;  % Fused: sin, multiply, add
m = mean(y, 'all');      % Reduction stays on GPU
fprintf('m=%.6f\n', double(m));  % Single download at sink
```

RunMat detects the elementwise chain (`sin`, `.*`, `+`), fuses them into one GPU dispatch, keeps `y` resident on GPU, and only downloads `m` when needed for output.

For more details, see [Introduction to RunMat GPU](docs/INTRODUCTION_TO_RUNMAT_GPU.md) and [How RunMat Fusion Works](docs/HOW_RUNMAT_FUSION_WORKS.md).

## 🎨 Modern Developer Experience

### Rich REPL with Intelligent Features
```bash
runmat> .info
🦀 RunMat v0.1.0 - High-Performance MATLAB Runtime
⚡ JIT: Cranelift (optimization: speed)
🧠 GC: Generational (heap: 45MB, collections: 12)
🚀 GPU: wgpu provider (Metal/DX12/Vulkan)
🎨 Plotting: GPU-accelerated (wgpu)
📊 Functions loaded: 200+ builtins + 0 user-defined

runmat> .stats
Execution Statistics:
  Total: 2, JIT: 0, Interpreter: 2
  Average time: 0.12ms

runmat> accel-info
GPU Acceleration Provider: wgpu
Device: Apple M2 Max
Backend: Metal
Fusion pipeline cache: 45 hits, 2 misses
```

### First-Class Jupyter Support
- Rich output formatting with LaTeX math rendering
- Interactive widgets for parameter exploration  
- Full debugging support with breakpoints

### Extensible Architecture
```rust
// Adding a new builtin function is trivial
#[runtime_builtin("myfunction")]
fn my_custom_function(x: f64, y: f64) -> f64 {
    x.powf(y) + x.sin()
}
```

### Advanced CLI Features

RunMat includes a comprehensive CLI with powerful features:

```bash
# Check GPU acceleration status
runmat accel-info

# Benchmark a script
runmat benchmark my_script.m --iterations 5 --jit

# Create a snapshot for faster startup
runmat snapshot create -o stdlib.snapshot

# GC statistics and control
runmat gc stats
runmat gc major

# System information
runmat info
```

See [CLI Documentation](docs/CLI.md) for the complete command reference.

## 📦 Package System

RunMat's package system enables both systems programmers and MATLAB users to extend the runtime. The core stays lean while packages provide domain-specific functionality.

### Native Packages (Rust)

High-performance built-ins implemented in Rust:

```rust
#[runtime_builtin(
    name = "norm2",
    category = "math/linalg",
    summary = "Euclidean norm of a vector.",
    examples = "n = norm2([3,4])  % 5"
)]
fn norm2_builtin(a: Value) -> Result<Value, String> {
    let t: Tensor = (&a).try_into()?;
    let s = t.data.iter().map(|x| x * x).sum::<f64>().sqrt();
    Ok(Value::Num(s))
}
```

Native packages get type-safe conversions, deterministic error IDs, and zero-cost documentation generation.

### Source Packages (MATLAB)

MATLAB source packages compile to RunMat bytecode:

```matlab
% +mypackage/norm2.m
function n = norm2(v)
    n = sqrt(sum(v .^ 2));
end
```

Both package types appear identically to users—functions show up in the namespace, reference docs, and tooling (help, search, doc indexing).

### Package Management

The RunMat package manager is still in active design—no CLI commands ship in the current toolchain yet. The [Package Manager Documentation](docs/PACKAGE_MANAGER.md) captures the proposed workflow (dependency manifests, registry + git sources, publishing flow) and will be updated once the implementation begins.

## 💡 Design Philosophy

RunMat follows a **minimal core, fast runtime, open extension model** philosophy:

### Core Principles

- **Full language support**: The core implements the complete MATLAB grammar and semantics, not a subset
- **Extensive built-ins**: The standard library aims for complete base MATLAB built-in coverage (200+ functions)
- **Tiered execution**: Ignition interpreter for fast startup, Turbine JIT for hot code
- **GPU-first math**: Fusion engine automatically turns MATLAB code into fast GPU workloads
- **Small, portable runtime**: Single static binary, fast startup, modern CLI, Jupyter kernel support
- **Toolboxes as packages**: Signal processing, statistics, image processing, and other domains live as packages

### What RunMat Is

- A modern, high-performance runtime for MATLAB code
- A minimal core with a thriving package ecosystem
- GPU-accelerated by default with intelligent CPU/GPU routing
- Open source and free forever

### What RunMat Is Not

- A reimplementation of MATLAB-in-full (toolboxes are packages)
- A compatibility layer (we implement semantics, not folklore)
- An IDE (use any editor: Cursor, VSCode, IntelliJ, etc.)

RunMat keeps the core small and uncompromisingly high-quality; everything else is a package. This enables:
- Fast iteration without destabilizing the runtime
- Domain experts shipping features without forking
- A smaller trusted compute base, easier auditing
- Community-driven package ecosystem

See [Design Philosophy](docs/DESIGN_PHILOSOPHY.md) for the complete design rationale.

## 🌍 Who Uses RunMat?

RunMat is built for array-heavy math in many domains.

Examples: 

<div align="center">
<table>
<tr>
<td align="center" width="25%">
<strong>Imaging / geospatial</strong><br/>
4K+ tiles, normalization, radiometric correction, QC metrics
</td>
<td align="center" width="25%">
<strong>Quant / simulation</strong><br/>
Monte Carlo risk, scenario analysis, covariance, factor models
</td>
<td align="center" width="25%">
<strong>Signal processing / control</strong><br/>
Filters, NLMS, large time-series jobs
</td>
<td align="center" width="25%">
<strong>Researchers and students</strong><br/>
MATLAB background, need faster runs on laptops or clusters
</td>
</tr>
</table>
</div>

If you write math in MATLAB and hit performance walls on CPU, RunMat is built for you.

## 🤝 Join the mission

RunMat is more than just software—it's a movement toward **open, fast, and accessible scientific computing**. We're building the future of numerical programming, and we need your help.

### 🛠️ How to Contribute

<table>
<tr>
<td width="33%">

**🚀 For Rust Developers**
- Implement new builtin functions
- Optimize the JIT compiler  
- Enhance the garbage collector
- Build developer tooling

[**Contribute Code →**](https://github.com/runmat-org/runmat/discussions)

</td>
<td width="33%">

**🔬 For Domain Experts**
- Add mathematical functions
- Write comprehensive tests
- Create benchmarks

[**Join Discussions →**](https://github.com/runmat-org/runmat/discussions)

</td>
<td width="33%">

**📚 For Everyone Else**
- Report bugs and feature requests
- Improve documentation
- Create tutorials and examples
- Spread the word

[**Get Started →**](https://github.com/runmat-org/runmat/issues/labels/good-first-issue)

</td>
</tr>
</table>

### 💬 Connect With Us

- **GitHub Discussions**: [Share ideas and get help]https://github.com/runmat-org/runmat/discussions  
- **Twitter**: [@dystreng]https://x.com/dystreng for updates and announcements

## 📜 License

RunMat is licensed under the **MIT License with Attribution Requirements**. This means:

✅ **Free for everyone** - individuals, academics, most companies  
✅ **Open source forever** - no vendor lock-in or license fees  
✅ **Commercial use allowed** - embed in your products freely  
⚠️ **Attribution required** - credit "RunMat by Dystr" in public distributions  
⚠️ **Special provisions** - large scientific software companies must keep modifications open source  

See [LICENSE.md](LICENSE.md) for complete terms or visit [runmat.org/license](https://runmat.org/license) for FAQs.

---

**Built with ❤️ by [Dystr Inc.](https://dystr.com) and the RunMat community**

⭐ **Star us on GitHub** if RunMat is useful to you.

[**🚀 Get Started**](https://runmat.org/docs/getting-started) • [**🐦 Follow @dystr**](https://x.com/dystrEng)

---

*MATLAB® is a registered trademark of The MathWorks, Inc. RunMat is not affiliated with, endorsed by, or sponsored by The MathWorks, Inc.*