runestick 0.6.3

Runescript, a generic stack-based virtual machine for Rust.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
//! A single execution unit in the runestick virtual machine.
//!
//! A unit consists of a sequence of instructions, and lookaside tables for
//! metadata like function locations.

use crate::collections::HashMap;
use crate::{
    Call, Component, Context, Hash, Inst, Item, Meta, Names, StaticString, ValueType, VmError,
    VmErrorKind,
};
use std::fmt;
use std::sync::Arc;
use thiserror::Error;

/// Errors raised when building a new unit.
#[derive(Debug, Error)]
pub enum UnitError {
    /// Trying to register a conflicting function.
    #[error("conflicting function signature already exists `{existing}`")]
    FunctionConflict {
        /// The signature of an already existing function.
        existing: UnitFnSignature,
    },
    /// Tried to add an use that conflicts with an existing one.
    #[error("conflicting type already exists `{existing}`")]
    TypeConflict {
        /// The path to the existing type.
        existing: Item,
    },
    /// Tried to add an unsupported meta item to a unit.
    #[error("unsupported meta type for item `{existing}`")]
    UnsupportedMeta {
        /// The item used.
        existing: Item,
    },
    /// Tried to add an item that already exists.
    #[error("trying to insert `{current}` but conflicting meta `{existing}` already exists")]
    MetaConflict {
        /// The meta we tried to insert.
        current: Meta,
        /// The existing item.
        existing: Meta,
    },
    /// A static string was missing for the given hash and slot.
    #[error("missing static string for hash `{hash}` and slot `{slot}`")]
    StaticStringMissing {
        /// The hash of the string.
        hash: Hash,
        /// The slot of the string.
        slot: usize,
    },
    /// A static byte string was missing for the given hash and slot.
    #[error("missing static byte string for hash `{hash}` and slot `{slot}`")]
    StaticBytesMissing {
        /// The hash of the byte string.
        hash: Hash,
        /// The slot of the byte string.
        slot: usize,
    },
    /// A static string was missing for the given hash and slot.
    #[error(
        "conflicting static string for hash `{hash}` between `{existing:?}` and `{current:?}`"
    )]
    StaticStringHashConflict {
        /// The hash of the string.
        hash: Hash,
        /// The static string that was inserted.
        current: String,
        /// The existing static string that conflicted.
        existing: String,
    },
    /// A static byte string was missing for the given hash and slot.
    #[error(
        "conflicting static string for hash `{hash}` between `{existing:?}` and `{current:?}`"
    )]
    StaticBytesHashConflict {
        /// The hash of the byte string.
        hash: Hash,
        /// The static byte string that was inserted.
        current: Vec<u8>,
        /// The existing static byte string that conflicted.
        existing: Vec<u8>,
    },
    /// A static object keys was missing for the given hash and slot.
    #[error("missing static object keys for hash `{hash}` and slot `{slot}`")]
    StaticObjectKeysMissing {
        /// The hash of the object keys.
        hash: Hash,
        /// The slot of the object keys.
        slot: usize,
    },
    /// A static object keys was missing for the given hash and slot.
    #[error(
        "conflicting static object keys for hash `{hash}` between `{existing:?}` and `{current:?}`"
    )]
    StaticObjectKeysHashConflict {
        /// The hash of the object keys.
        hash: Hash,
        /// The static object keys that was inserted.
        current: Box<[String]>,
        /// The existing static object keys that conflicted.
        existing: Box<[String]>,
    },
    /// Tried to add a duplicate label.
    #[error("duplicate label `{label}`")]
    DuplicateLabel {
        /// The duplicate label.
        label: Label,
    },
    /// The specified label is missing.
    #[error("missing label `{label}`")]
    MissingLabel {
        /// The missing label.
        label: Label,
    },
    /// Overflow error.
    #[error("base offset overflow")]
    BaseOverflow,
    /// Overflow error.
    #[error("offset overflow")]
    OffsetOverflow,
}

/// A span corresponding to a range in the source file being parsed.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Span {
    /// The start of the span in bytes.
    pub start: usize,
    /// The end of the span in bytes.
    pub end: usize,
}

impl Span {
    /// Construct a new span.
    pub fn new(start: usize, end: usize) -> Self {
        Self { start, end }
    }

    /// Return a span with a modified start position.
    pub fn with_start(self, start: usize) -> Self {
        Self {
            start,
            end: self.end,
        }
    }

    /// Return a span with a modified end position.
    pub fn with_end(self, end: usize) -> Self {
        Self {
            start: self.start,
            end,
        }
    }

    /// Check if current span completely overlaps with another.
    pub fn overlaps(self, other: Span) -> bool {
        self.start <= other.start && self.end >= other.end
    }

    /// An empty span.
    pub const fn empty() -> Self {
        Self { start: 0, end: 0 }
    }

    /// Get the length of the span.
    pub fn len(self) -> usize {
        self.end.saturating_sub(self.start)
    }

    /// Check if the span is empty.
    pub fn is_empty(self) -> bool {
        self.start == self.end
    }

    /// Join this span with another span.
    pub fn join(self, other: Self) -> Self {
        Self {
            start: usize::min(self.start, other.start),
            end: usize::max(self.end, other.end),
        }
    }

    /// Get the point span.
    pub fn point(pos: usize) -> Self {
        Self {
            start: pos,
            end: pos,
        }
    }

    /// Narrow the span with the given amount.
    pub fn narrow(self, amount: usize) -> Self {
        Self {
            start: self.start.saturating_add(amount),
            end: self.end.saturating_sub(amount),
        }
    }

    /// Trim the start of the span by the given amount.
    pub fn trim_start(self, amount: usize) -> Self {
        Self {
            start: usize::min(self.start.saturating_add(amount), self.end),
            end: self.end,
        }
    }

    /// Trim the end of the span by the given amount.
    pub fn trim_end(self, amount: usize) -> Self {
        Self {
            start: self.start,
            end: usize::max(self.end.saturating_sub(amount), self.start),
        }
    }
}

impl fmt::Display for Span {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{}:{}", self.start, self.end)
    }
}

/// The kind of a registered function.
#[derive(Debug, Clone, Copy)]
pub enum UnitFnKind {
    /// Offset to call a "real" function.
    Offset {
        /// Offset of the registered function.
        offset: usize,
        /// The way the function is called.
        call: Call,
    },
    /// A tuple constructor.
    Tuple {
        /// The type of the tuple.
        hash: Hash,
    },
    /// A tuple variant constructor.
    TupleVariant {
        /// The hash of the enum type.
        enum_hash: Hash,
        /// The hash of the variant.
        hash: Hash,
    },
}

/// Information about a registered function.
#[derive(Debug, Clone)]
pub struct UnitFnInfo {
    /// The kind of the registered function.
    pub kind: UnitFnKind,
    /// Signature of the function.
    pub signature: UnitFnSignature,
}

/// A description of a function signature.
#[derive(Debug, Clone)]
pub struct UnitFnSignature {
    /// The path of the function.
    pub path: Item,
    /// The number of arguments expected in the function.
    pub args: usize,
}

impl UnitFnSignature {
    /// Construct a new function signature.
    pub fn new(path: Item, args: usize) -> Self {
        Self { path, args }
    }
}

impl fmt::Display for UnitFnSignature {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{}(", self.path)?;

        let mut it = 0..self.args;
        let last = it.next_back();

        for _ in it {
            write!(fmt, "arg, ")?;
        }

        if last.is_some() {
            write!(fmt, "arg")?;
        }

        write!(fmt, ")")?;
        Ok(())
    }
}

/// Debug information for every instruction.
#[derive(Debug)]
pub struct DebugInfo {
    /// The span of the instruction.
    pub span: Span,
    /// The comment for the line.
    pub comment: Option<String>,
    /// Label associated with the location.
    pub label: Option<Label>,
}

/// Information on a type.
#[derive(Debug)]
pub struct UnitTypeInfo {
    /// A type declared in a unit.
    pub hash: Hash,
    /// value type of the given type.
    pub value_type: ValueType,
}

/// The key of an import.
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct ImportKey {
    /// Where the import is located.
    pub item: Item,
    /// The component that is imported.
    pub component: Component,
}

impl ImportKey {
    /// Construct a new import key.
    pub fn new<C>(item: Item, component: C) -> Self
    where
        C: Into<Component>,
    {
        Self {
            item,
            component: component.into(),
        }
    }

    /// Construct an import key for a single component.
    pub fn component<C>(component: C) -> Self
    where
        C: Into<Component>,
    {
        Self {
            item: Item::empty(),
            component: component.into(),
        }
    }
}

/// An imported entry.
#[derive(Debug)]
pub struct ImportEntry {
    /// The item being imported.
    pub item: Item,
    /// The span of the import.
    pub span: Option<Span>,
}

impl ImportEntry {
    /// Construct an entry.
    pub fn of<I>(iter: I) -> Self
    where
        I: IntoIterator,
        I::Item: Into<Component>,
    {
        Self {
            item: Item::of(iter),
            span: None,
        }
    }
}

/// Instructions from a single source file.
#[derive(Debug, Default)]
pub struct Unit {
    /// The instructions contained in the source file.
    instructions: Vec<Inst>,
    /// All imports in the current unit.
    ///
    /// Only used to link against the current environment to make sure all
    /// required units are present.
    imports: HashMap<ImportKey, ImportEntry>,
    /// Item metadata in the context.
    meta: HashMap<Item, Meta>,
    /// Where functions are located in the collection of instructions.
    functions: HashMap<Hash, Arc<UnitFnInfo>>,
    /// Declared types.
    types: HashMap<Hash, UnitTypeInfo>,
    /// Function by address.
    functions_rev: HashMap<usize, Hash>,
    /// A static string.
    static_strings: Vec<Arc<StaticString>>,
    /// Reverse lookup for static strings.
    static_string_rev: HashMap<Hash, usize>,
    /// A static byte string.
    static_bytes: Vec<Vec<u8>>,
    /// Reverse lookup for static byte strings.
    static_bytes_rev: HashMap<Hash, usize>,
    /// Slots used for object keys.
    ///
    /// This is used when an object is used in a pattern match, to avoid having
    /// to send the collection of keys to the virtual machine.
    ///
    /// All keys are sorted with the default string sort.
    static_object_keys: Vec<Box<[String]>>,
    /// Used to detect duplicates in the collection of static object keys.
    static_object_keys_rev: HashMap<Hash, usize>,
    /// Debug info for each line.
    debug: Vec<DebugInfo>,
    /// The current label count.
    label_count: usize,
    /// A collection of required function hashes.
    required_functions: HashMap<Hash, Vec<Span>>,
    /// All available names in the context.
    names: Names,
}

impl Unit {
    /// Construct a new unit.
    pub fn new() -> Self {
        Self::default()
    }

    /// Construct a new unit with the default prelude.
    pub fn with_default_prelude() -> Self {
        let mut this = Self::new();
        this.imports.insert(
            ImportKey::component("dbg"),
            ImportEntry::of(&["std", "dbg"]),
        );
        this.imports.insert(
            ImportKey::component("drop"),
            ImportEntry::of(&["std", "drop"]),
        );
        this.imports.insert(
            ImportKey::component("is_readable"),
            ImportEntry::of(&["std", "is_readable"]),
        );
        this.imports.insert(
            ImportKey::component("is_writable"),
            ImportEntry::of(&["std", "is_writable"]),
        );
        this.imports.insert(
            ImportKey::component("panic"),
            ImportEntry::of(&["std", "panic"]),
        );
        this.imports.insert(
            ImportKey::component("print"),
            ImportEntry::of(&["std", "print"]),
        );
        this.imports.insert(
            ImportKey::component("println"),
            ImportEntry::of(&["std", "println"]),
        );
        this.imports.insert(
            ImportKey::component("unit"),
            ImportEntry::of(&["std", "unit"]),
        );
        this.imports.insert(
            ImportKey::component("bool"),
            ImportEntry::of(&["std", "bool"]),
        );
        this.imports.insert(
            ImportKey::component("byte"),
            ImportEntry::of(&["std", "byte"]),
        );
        this.imports.insert(
            ImportKey::component("char"),
            ImportEntry::of(&["std", "char"]),
        );
        this.imports.insert(
            ImportKey::component("int"),
            ImportEntry::of(&["std", "int"]),
        );
        this.imports.insert(
            ImportKey::component("float"),
            ImportEntry::of(&["std", "float"]),
        );
        this.imports.insert(
            ImportKey::component("Object"),
            ImportEntry::of(&["std", "object", "Object"]),
        );
        this.imports.insert(
            ImportKey::component("Vec"),
            ImportEntry::of(&["std", "vec", "Vec"]),
        );
        this.imports.insert(
            ImportKey::component("String"),
            ImportEntry::of(&["std", "string", "String"]),
        );

        this.imports.insert(
            ImportKey::component("Result"),
            ImportEntry::of(&["std", "result", "Result"]),
        );

        this.imports.insert(
            ImportKey::component("Err"),
            ImportEntry::of(&["std", "result", "Result", "Err"]),
        );

        this.imports.insert(
            ImportKey::component("Ok"),
            ImportEntry::of(&["std", "result", "Result", "Ok"]),
        );

        this.imports.insert(
            ImportKey::component("Option"),
            ImportEntry::of(&["std", "option", "Option"]),
        );

        this.imports.insert(
            ImportKey::component("Some"),
            ImportEntry::of(&["std", "option", "Option", "Some"]),
        );

        this.imports.insert(
            ImportKey::component("None"),
            ImportEntry::of(&["std", "option", "Option", "None"]),
        );

        this
    }

    /// Check if unit contains the given name.
    pub fn contains_name(&self, item: &Item) -> bool {
        self.names.contains(item)
    }

    /// Check if unit contains the given name by prefix.
    pub fn contains_prefix(&self, item: &Item) -> bool {
        self.names.contains_prefix(item)
    }

    /// Iterate over known child components of the given name.
    pub fn iter_components<'a, I>(&'a self, iter: I) -> impl Iterator<Item = &'a Component>
    where
        I: IntoIterator,
        I::Item: Into<Component>,
    {
        self.names.iter_components(iter)
    }

    /// Access the meta for the given language item.
    pub fn lookup_meta(&self, name: &Item) -> Option<Meta> {
        self.meta.get(name).cloned()
    }

    /// Access the type for the given language item.
    pub fn lookup_type(&self, hash: Hash) -> Option<&UnitTypeInfo> {
        self.types.get(&hash)
    }

    /// Access the function at the given instruction location.
    pub fn function_at(&self, n: usize) -> Option<(Hash, &UnitFnInfo)> {
        let hash = self.functions_rev.get(&n).copied()?;
        Some((hash, self.functions.get(&hash)?))
    }

    /// Access debug information for the given location if it is available.
    pub fn debug_info_at(&self, n: usize) -> Option<&DebugInfo> {
        self.debug.get(n)
    }

    /// Get the instruction at the given instruction pointer.
    pub fn instruction_at(&self, ip: usize) -> Option<&Inst> {
        self.instructions.get(ip)
    }

    /// Iterate over all static strings in the unit.
    pub fn iter_static_strings(&self) -> impl Iterator<Item = &Arc<StaticString>> + '_ {
        self.static_strings.iter()
    }

    /// Iterate over all static object keys in the unit.
    pub fn iter_static_object_keys(&self) -> impl Iterator<Item = (Hash, &[String])> + '_ {
        let mut it = self.static_object_keys.iter();

        std::iter::from_fn(move || {
            let s = it.next()?;
            Some((Hash::object_keys(&s[..]), &s[..]))
        })
    }

    /// Iterate over all instructions in order.
    pub fn iter_instructions(&self) -> impl Iterator<Item = Inst> + '_ {
        self.instructions.iter().copied()
    }

    /// Iterate over known functions.
    pub fn iter_functions(&self) -> impl Iterator<Item = (Hash, &Arc<UnitFnInfo>)> + '_ {
        let mut it = self.functions.iter();

        std::iter::from_fn(move || {
            let (k, v) = it.next()?;
            Some((*k, v))
        })
    }

    /// Iterate over known imports.
    pub fn iter_imports<'a>(
        &'a self,
    ) -> impl Iterator<Item = (&'a ImportKey, &'a ImportEntry)> + '_ {
        self.imports.iter()
    }

    /// Lookup the static string by slot, if it exists.
    pub fn lookup_string(&self, slot: usize) -> Result<&Arc<StaticString>, VmError> {
        Ok(self
            .static_strings
            .get(slot)
            .ok_or_else(|| VmError::from(VmErrorKind::MissingStaticString { slot }))?)
    }

    /// Lookup the static byte string by slot, if it exists.
    pub fn lookup_bytes(&self, slot: usize) -> Result<&[u8], VmError> {
        Ok(self
            .static_bytes
            .get(slot)
            .ok_or_else(|| VmError::from(VmErrorKind::MissingStaticString { slot }))?
            .as_ref())
    }

    /// Lookup the static object keys by slot, if it exists.
    pub fn lookup_object_keys(&self, slot: usize) -> Option<&[String]> {
        self.static_object_keys.get(slot).map(|keys| &keys[..])
    }

    /// Insert a static string and return its associated slot that can later be
    /// looked up through [lookup_string][Self::lookup_string].
    ///
    /// Only uses up space if the static string is unique.
    pub fn new_static_string(&mut self, current: &str) -> Result<usize, UnitError> {
        let current = StaticString::new(current);
        let hash = current.hash();

        if let Some(existing_slot) = self.static_string_rev.get(&hash).copied() {
            let existing = self.static_strings.get(existing_slot).ok_or_else(|| {
                UnitError::StaticStringMissing {
                    hash,
                    slot: existing_slot,
                }
            })?;

            if &***existing != &*current {
                return Err(UnitError::StaticStringHashConflict {
                    hash,
                    current: (*current).clone(),
                    existing: (***existing).clone(),
                });
            }

            return Ok(existing_slot);
        }

        let new_slot = self.static_strings.len();
        self.static_strings.push(Arc::new(current));
        self.static_string_rev.insert(hash, new_slot);
        Ok(new_slot)
    }

    /// Insert a static byte string and return its associated slot that can
    /// later be looked up through [lookup_bytes][Self::lookup_bytes].
    ///
    /// Only uses up space if the static byte string is unique.
    pub fn new_static_bytes(&mut self, current: &[u8]) -> Result<usize, UnitError> {
        let hash = Hash::of(&current);

        if let Some(existing_slot) = self.static_bytes_rev.get(&hash).copied() {
            let existing = self.static_bytes.get(existing_slot).ok_or_else(|| {
                UnitError::StaticBytesMissing {
                    hash,
                    slot: existing_slot,
                }
            })?;

            if &**existing != current {
                return Err(UnitError::StaticBytesHashConflict {
                    hash,
                    current: current.to_owned(),
                    existing: existing.clone(),
                });
            }

            return Ok(existing_slot);
        }

        let new_slot = self.static_bytes.len();
        self.static_bytes.push(current.to_owned());
        self.static_bytes_rev.insert(hash, new_slot);
        Ok(new_slot)
    }

    /// Insert a new collection of static object keys, or return one already
    /// existing.
    pub fn new_static_object_keys(&mut self, current: &[String]) -> Result<usize, UnitError> {
        let current = current.to_vec().into_boxed_slice();
        let hash = Hash::object_keys(&current[..]);

        if let Some(existing_slot) = self.static_object_keys_rev.get(&hash).copied() {
            let existing = self.static_object_keys.get(existing_slot).ok_or_else(|| {
                UnitError::StaticObjectKeysMissing {
                    hash,
                    slot: existing_slot,
                }
            })?;

            if *existing != current {
                return Err(UnitError::StaticObjectKeysHashConflict {
                    hash,
                    current,
                    existing: existing.clone(),
                });
            }

            return Ok(existing_slot);
        }

        let new_slot = self.static_object_keys.len();
        self.static_object_keys.push(current);
        self.static_object_keys_rev.insert(hash, new_slot);
        Ok(new_slot)
    }

    /// Lookup information of a function.
    pub fn lookup(&self, hash: Hash) -> Option<&Arc<UnitFnInfo>> {
        self.functions.get(&hash)
    }

    /// Look up an use by name.
    pub fn lookup_import(&self, key: &ImportKey) -> Option<&ImportEntry> {
        self.imports.get(&key)
    }

    /// Declare a new import.
    pub fn new_import<I>(&mut self, item: Item, path: I, span: Span) -> Result<(), UnitError>
    where
        I: Copy + IntoIterator,
        I::Item: Into<Component>,
    {
        let path = Item::of(path);

        if let Some(last) = path.last() {
            let entry = ImportEntry {
                item: path.clone(),
                span: Some(span),
            };

            self.imports
                .insert(ImportKey::new(item, last.clone()), entry);
        }

        Ok(())
    }

    /// Declare a new struct.
    pub fn insert_meta(&mut self, meta: Meta) -> Result<(), UnitError> {
        let item = match &meta {
            Meta::MetaTuple { tuple, .. } => {
                let info = Arc::new(UnitFnInfo {
                    kind: UnitFnKind::Tuple { hash: tuple.hash },
                    signature: UnitFnSignature {
                        path: tuple.item.clone(),
                        args: tuple.args,
                    },
                });

                if let Some(old) = self.functions.insert(tuple.hash, info) {
                    return Err(UnitError::FunctionConflict {
                        existing: old.signature.clone(),
                    });
                }

                let info = UnitTypeInfo {
                    hash: tuple.hash,
                    value_type: ValueType::Type(tuple.hash),
                };

                if self.types.insert(tuple.hash, info).is_some() {
                    return Err(UnitError::TypeConflict {
                        existing: tuple.item.clone(),
                    });
                }

                tuple.item.clone()
            }
            Meta::MetaVariantTuple {
                enum_item, tuple, ..
            } => {
                let enum_hash = Hash::type_hash(enum_item);

                let info = Arc::new(UnitFnInfo {
                    kind: UnitFnKind::TupleVariant {
                        enum_hash,
                        hash: tuple.hash,
                    },
                    signature: UnitFnSignature {
                        path: tuple.item.clone(),
                        args: tuple.args,
                    },
                });

                if let Some(old) = self.functions.insert(tuple.hash, info) {
                    return Err(UnitError::FunctionConflict {
                        existing: old.signature.clone(),
                    });
                }

                let info = UnitTypeInfo {
                    hash: tuple.hash,
                    value_type: ValueType::Type(enum_hash),
                };

                if self.types.insert(tuple.hash, info).is_some() {
                    return Err(UnitError::TypeConflict {
                        existing: tuple.item.clone(),
                    });
                }

                tuple.item.clone()
            }
            Meta::MetaStruct { object, .. } => {
                let hash = Hash::type_hash(&object.item);

                let info = UnitTypeInfo {
                    hash,
                    value_type: ValueType::Type(hash),
                };

                if self.types.insert(hash, info).is_some() {
                    return Err(UnitError::TypeConflict {
                        existing: object.item.clone(),
                    });
                }

                object.item.clone()
            }
            Meta::MetaVariantStruct {
                enum_item, object, ..
            } => {
                let hash = Hash::type_hash(&object.item);
                let enum_hash = Hash::type_hash(enum_item);

                let info = UnitTypeInfo {
                    hash,
                    value_type: ValueType::Type(enum_hash),
                };

                if self.types.insert(hash, info).is_some() {
                    return Err(UnitError::TypeConflict {
                        existing: object.item.clone(),
                    });
                }

                object.item.clone()
            }
            Meta::MetaEnum { item, .. } => {
                let hash = Hash::type_hash(item);

                let info = UnitTypeInfo {
                    hash,
                    value_type: ValueType::Type(hash),
                };

                if self.types.insert(hash, info).is_some() {
                    return Err(UnitError::TypeConflict {
                        existing: item.clone(),
                    });
                }

                item.clone()
            }
            Meta::MetaFunction { item, .. } => item.clone(),
            Meta::MetaClosure { item, .. } => item.clone(),
        };

        self.names.insert(&item);

        if let Some(existing) = self.meta.insert(item.clone(), meta.clone()) {
            return Err(UnitError::MetaConflict {
                current: meta,
                existing,
            });
        }

        Ok(())
    }

    /// Construct a new empty assembly associated with the current unit.
    pub fn new_assembly(&self) -> Assembly {
        Assembly::new(self.label_count)
    }

    /// Declare a new function at the current instruction pointer.
    pub fn new_function(
        &mut self,
        path: Item,
        args: usize,
        assembly: Assembly,
        call: Call,
    ) -> Result<(), UnitError> {
        let offset = self.instructions.len();
        let hash = Hash::type_hash(&path);

        self.functions_rev.insert(offset, hash);

        let info = Arc::new(UnitFnInfo {
            kind: UnitFnKind::Offset { offset, call },
            signature: UnitFnSignature::new(path, args),
        });

        if let Some(old) = self.functions.insert(hash, info) {
            return Err(UnitError::FunctionConflict {
                existing: old.signature.clone(),
            });
        }

        self.add_assembly(assembly)?;
        Ok(())
    }

    /// Declare a new instance function at the current instruction pointer.
    pub fn new_instance_function(
        &mut self,
        path: Item,
        value_type: ValueType,
        name: &str,
        args: usize,
        assembly: Assembly,
        call: Call,
    ) -> Result<(), UnitError> {
        log::trace!("instance fn: {}", path);

        let offset = self.instructions.len();
        let instance_fn = Hash::of(name);
        let instance_fn = Hash::instance_function(value_type, instance_fn);
        let hash = Hash::type_hash(&path);

        let info = Arc::new(UnitFnInfo {
            kind: UnitFnKind::Offset { offset, call },
            signature: UnitFnSignature::new(path, args),
        });

        if let Some(old) = self.functions.insert(instance_fn, info.clone()) {
            return Err(UnitError::FunctionConflict {
                existing: old.signature.clone(),
            });
        }

        if let Some(old) = self.functions.insert(hash, info) {
            return Err(UnitError::FunctionConflict {
                existing: old.signature.clone(),
            });
        }

        self.functions_rev.insert(offset, hash);
        self.add_assembly(assembly)?;
        Ok(())
    }

    /// Translate the given assembly into instructions.
    fn add_assembly(&mut self, assembly: Assembly) -> Result<(), UnitError> {
        self.label_count = assembly.label_count;

        self.required_functions.extend(assembly.required_functions);

        for (pos, (inst, span)) in assembly.instructions.into_iter().enumerate() {
            let mut comment = None;
            let label = assembly.labels_rev.get(&pos).copied();

            match inst {
                AssemblyInst::Jump { label } => {
                    comment = Some(format!("label:{}", label));
                    let offset = translate_offset(pos, label, &assembly.labels)?;
                    self.instructions.push(Inst::Jump { offset });
                }
                AssemblyInst::JumpIf { label } => {
                    comment = Some(format!("label:{}", label));
                    let offset = translate_offset(pos, label, &assembly.labels)?;
                    self.instructions.push(Inst::JumpIf { offset });
                }
                AssemblyInst::JumpIfNot { label } => {
                    comment = Some(format!("label:{}", label));
                    let offset = translate_offset(pos, label, &assembly.labels)?;
                    self.instructions.push(Inst::JumpIfNot { offset });
                }
                AssemblyInst::JumpIfBranch { branch, label } => {
                    comment = Some(format!("label:{}", label));
                    let offset = translate_offset(pos, label, &assembly.labels)?;
                    self.instructions
                        .push(Inst::JumpIfBranch { branch, offset });
                }
                AssemblyInst::PopAndJumpIf { count, label } => {
                    comment = Some(format!("label:{}", label));
                    let offset = translate_offset(pos, label, &assembly.labels)?;
                    self.instructions.push(Inst::PopAndJumpIf { count, offset });
                }
                AssemblyInst::PopAndJumpIfNot { count, label } => {
                    comment = Some(format!("label:{}", label));
                    let offset = translate_offset(pos, label, &assembly.labels)?;
                    self.instructions
                        .push(Inst::PopAndJumpIfNot { count, offset });
                }
                AssemblyInst::Raw { raw } => {
                    self.instructions.push(raw);
                }
            }

            if let Some(comments) = assembly.comments.get(&pos) {
                let actual = comment
                    .take()
                    .into_iter()
                    .chain(comments.iter().cloned())
                    .collect::<Vec<_>>()
                    .join("; ");
                comment = Some(actual)
            }

            self.debug.push(DebugInfo {
                span,
                comment,
                label,
            });
        }

        return Ok(());

        fn translate_offset(
            base: usize,
            label: Label,
            labels: &HashMap<Label, usize>,
        ) -> Result<isize, UnitError> {
            use std::convert::TryFrom as _;

            let offset = labels
                .get(&label)
                .copied()
                .ok_or_else(|| UnitError::MissingLabel { label })?;

            let base = isize::try_from(base).map_err(|_| UnitError::BaseOverflow)?;
            let offset = isize::try_from(offset).map_err(|_| UnitError::OffsetOverflow)?;

            let (base, _) = base.overflowing_add(1);
            let (offset, _) = offset.overflowing_sub(base);
            Ok(offset)
        }
    }

    /// Try to link the unit with the context, checking that all necessary
    /// functions are provided.
    ///
    /// This can prevent a number of runtime errors, like missing functions.
    pub fn link(&self, context: &Context, errors: &mut LinkerErrors) -> bool {
        for (hash, spans) in &self.required_functions {
            if self.functions.get(hash).is_none() && context.lookup(*hash).is_none() {
                errors.errors.push(LinkerError::MissingFunction {
                    hash: *hash,
                    spans: spans.clone(),
                });
            }
        }

        errors.errors.is_empty()
    }
}

/// A label that can be jumped to.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Label {
    name: &'static str,
    ident: usize,
}

impl fmt::Display for Label {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "{}_{}", self.name, self.ident)
    }
}

#[derive(Debug, Clone)]
enum AssemblyInst {
    Jump { label: Label },
    JumpIf { label: Label },
    JumpIfNot { label: Label },
    JumpIfBranch { branch: i64, label: Label },
    PopAndJumpIf { count: usize, label: Label },
    PopAndJumpIfNot { count: usize, label: Label },
    Raw { raw: Inst },
}

/// Helper structure to build instructions and maintain certain invariants.
#[derive(Debug, Clone, Default)]
pub struct Assembly {
    /// Label to offset.
    labels: HashMap<Label, usize>,
    /// Registered label by offset.
    labels_rev: HashMap<usize, Label>,
    /// Instructions with spans.
    instructions: Vec<(AssemblyInst, Span)>,
    /// Comments associated with instructions.
    comments: HashMap<usize, Vec<String>>,
    /// The number of labels.
    label_count: usize,
    /// The collection of functions required by this assembly.
    required_functions: HashMap<Hash, Vec<Span>>,
}

impl Assembly {
    /// Construct a new assembly.
    fn new(label_count: usize) -> Self {
        Self {
            labels: Default::default(),
            labels_rev: Default::default(),
            instructions: Default::default(),
            comments: Default::default(),
            label_count,
            required_functions: Default::default(),
        }
    }

    /// Construct and return a new label.
    pub fn new_label(&mut self, name: &'static str) -> Label {
        let label = Label {
            name,
            ident: self.label_count,
        };

        self.label_count += 1;
        label
    }

    /// Apply the label at the current instruction offset.
    pub fn label(&mut self, label: Label) -> Result<Label, UnitError> {
        let offset = self.instructions.len();

        if self.labels.insert(label, offset).is_some() {
            return Err(UnitError::DuplicateLabel { label });
        }

        self.labels_rev.insert(offset, label);
        Ok(label)
    }

    /// Add a jump to the given label.
    pub fn jump(&mut self, label: Label, span: Span) {
        self.instructions.push((AssemblyInst::Jump { label }, span));
    }

    /// Add a conditional jump to the given label.
    pub fn jump_if(&mut self, label: Label, span: Span) {
        self.instructions
            .push((AssemblyInst::JumpIf { label }, span));
    }

    /// Add a conditional jump to the given label.
    pub fn jump_if_not(&mut self, label: Label, span: Span) {
        self.instructions
            .push((AssemblyInst::JumpIfNot { label }, span));
    }

    /// Add a conditional jump-if-branch instruction.
    pub fn jump_if_branch(&mut self, branch: i64, label: Label, span: Span) {
        self.instructions
            .push((AssemblyInst::JumpIfBranch { branch, label }, span));
    }

    /// Add a pop-and-jump-if instruction to a label.
    pub fn pop_and_jump_if(&mut self, count: usize, label: Label, span: Span) {
        self.instructions
            .push((AssemblyInst::PopAndJumpIf { count, label }, span));
    }

    /// Add a pop-and-jump-if-not instruction to a label.
    pub fn pop_and_jump_if_not(&mut self, count: usize, label: Label, span: Span) {
        self.instructions
            .push((AssemblyInst::PopAndJumpIfNot { count, label }, span));
    }

    /// Push a raw instruction.
    pub fn push(&mut self, raw: Inst, span: Span) {
        if let Inst::Call { hash, .. } = raw {
            self.required_functions.entry(hash).or_default().push(span);
        }

        self.instructions.push((AssemblyInst::Raw { raw }, span));
    }

    /// Push a raw instruction.
    pub fn push_with_comment<C>(&mut self, raw: Inst, span: Span, comment: C)
    where
        C: AsRef<str>,
    {
        let pos = self.instructions.len();

        self.comments
            .entry(pos)
            .or_default()
            .push(comment.as_ref().to_owned());

        self.push(raw, span);
    }
}

/// An error raised during linking.
#[derive(Debug)]
pub enum LinkerError {
    /// Missing a function with the given hash.
    MissingFunction {
        /// Hash of the function.
        hash: Hash,
        /// Spans where the function is used.
        spans: Vec<Span>,
    },
}

/// Linker errors.
#[derive(Debug, Default)]
pub struct LinkerErrors {
    errors: Vec<LinkerError>,
}

impl LinkerErrors {
    /// Construct a new collection of linker errors.
    pub fn new() -> Self {
        Self::default()
    }

    /// Test if error collection is empty.
    pub fn is_empty(&self) -> bool {
        self.errors.is_empty()
    }

    /// Return an iterator over all linker errors.
    pub fn errors(self) -> impl Iterator<Item = LinkerError> {
        self.errors.into_iter()
    }
}

impl<'a> IntoIterator for &'a LinkerErrors {
    type IntoIter = std::slice::Iter<'a, LinkerError>;
    type Item = <Self::IntoIter as Iterator>::Item;

    fn into_iter(self) -> Self::IntoIter {
        self.errors.iter()
    }
}