1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
//! SIMD-vectorized implementations of various math functions that are commonly
//! used in neural networks.
//!
//! For each function in this library there are multiple variants, which
//! typically include:
//!
//! - A version that operates on scalars
//! - A version that reads values from an input slice and writes to the
//! corresponding position in an equal-length output slice. These have a
//! `vec_` prefix.
//! - A version that reads values from a mutable input slice and writes
//! the computed values back in-place. These have a `vec_` prefix and
//! `_in_place` suffix.
//!
//! All variants use the same underlying implementation and should have the
//! same accuracy.
//!
//! See the source code for comments on accuracy.
mod erf;
mod exp;
mod simd_vec;
mod softmax;
mod tanh;
mod ulp;
#[cfg(test)]
mod testing;
pub use erf::{erf, vec_erf, vec_erf_in_place};
pub use exp::{exp, sigmoid, vec_exp, vec_exp_in_place, vec_sigmoid, vec_sigmoid_in_place};
use simd_vec::SimdFloat;
pub use softmax::{vec_softmax, vec_softmax_in_place};
pub use tanh::{tanh, vec_tanh, vec_tanh_in_place};
/// Maximum SIMD vector size supported by this library, in units of 32-byte lanes.
///
/// Chosen as 16 to match AVX-512.
const MAX_LEN: usize = 16;
/// Const pointer to a range of `T`s.
///
/// This is like an `&[T]`, but without the guarantee that no mutable aliases
/// exist. This is useful as it enables re-using the same unsafe code for
/// mutating and non-mutating variants of a function.
#[derive(Copy, Clone)]
struct PtrLen<T> {
ptr: *const T,
len: usize,
}
impl<'a, T> From<&'a [T]> for PtrLen<T> {
fn from(val: &'a [T]) -> PtrLen<T> {
PtrLen {
ptr: val.as_ptr(),
len: val.len(),
}
}
}
impl<'a, T> From<&'a mut [T]> for PtrLen<T> {
fn from(val: &'a mut [T]) -> PtrLen<T> {
PtrLen {
ptr: val.as_ptr(),
len: val.len(),
}
}
}
impl<T> From<MutPtrLen<T>> for PtrLen<T> {
fn from(val: MutPtrLen<T>) -> PtrLen<T> {
PtrLen {
ptr: val.ptr,
len: val.len,
}
}
}
/// Mutable pointer to a range of `T`s.
///
/// This is like an `&mut [T]`, but without the guarantee that no aliases exist.
#[derive(Copy, Clone)]
struct MutPtrLen<T> {
ptr: *mut T,
len: usize,
}
impl<'a, T> From<&'a mut [T]> for MutPtrLen<T> {
fn from(val: &'a mut [T]) -> MutPtrLen<T> {
MutPtrLen {
ptr: val.as_mut_ptr(),
len: val.len(),
}
}
}
/// Apply a unary operation to each element in `xs` and store the results in
/// `out`.
///
/// The operation is applied to SIMD vector-sized groups of elements at
/// a time using `simd_op`. If the final group has a size that is smaller than
/// the SIMD vector width, `simd_op` will be called with a SIMD vector that
/// is padded with `pad` on the right.
///
/// Safety: The caller must ensure that `xs` and `out` are valid pointers
/// to buffers of the expected lengths.
#[cfg_attr(target_arch = "x86_64", target_feature(enable = "avx2"))]
#[cfg_attr(target_arch = "x86_64", target_feature(enable = "fma"))]
unsafe fn vec_unary_op<S: SimdFloat, Op: FnMut(S) -> S>(
xs: PtrLen<f32>,
out: MutPtrLen<f32>,
mut simd_op: Op,
pad: f32,
) {
assert!(xs.len == out.len);
let mut n = xs.len;
let mut x_ptr = xs.ptr;
let mut out_ptr = out.ptr;
// S::LEN can't be used as the array size due to const generics limitations.
const MAX_LEN: usize = 16;
assert!(S::LEN <= MAX_LEN);
let mut remainder = [pad; MAX_LEN];
// Main loop over full vectors.
while n >= S::LEN {
let x = S::load(x_ptr);
let y = simd_op(x);
y.store(out_ptr);
n -= S::LEN;
x_ptr = x_ptr.add(S::LEN);
out_ptr = out_ptr.add(S::LEN);
}
// Handler remainder with a padded vector.
if n > 0 {
for i in 0..n {
remainder[i] = *x_ptr.add(i);
}
let x = S::load(remainder.as_ptr());
let y = simd_op(x);
y.store(remainder.as_mut_ptr());
for i in 0..n {
*out_ptr.add(i) = remainder[i];
}
}
}
#[cfg_attr(target_arch = "x86_64", target_feature(enable = "avx2"))]
#[cfg_attr(target_arch = "x86_64", target_feature(enable = "fma"))]
unsafe fn vec_fold<S: SimdFloat, Op: Fn(S, S) -> S>(
xs: PtrLen<f32>,
mut accum: S,
simd_op: Op,
pad: f32,
) -> S {
let mut n = xs.len;
let mut x_ptr = xs.ptr;
// S::LEN can't be used as the array size due to const generics limitations.
assert!(S::LEN <= MAX_LEN);
let mut remainder = [pad; MAX_LEN];
// Main loop over full vectors.
while n >= S::LEN {
let x = S::load(x_ptr);
accum = simd_op(accum, x);
n -= S::LEN;
x_ptr = x_ptr.add(S::LEN);
}
// Handler remainder with a padded vector.
if n > 0 {
for i in 0..n {
remainder[i] = *x_ptr.add(i);
}
let x = S::load(remainder.as_ptr());
accum = simd_op(accum, x);
}
accum
}
/// Invoke the best available implementation of a unary operator on the current
/// platform.
///
/// This generates a call to [vec_unary_op] for each of the supported
/// instruction sets, passing in a version of `$op_func` that is parametrized by
/// the corresponding SIMD vector type. At runtime the appropriate
/// `vec_unary_op` call will be invoked.
macro_rules! dispatch_unary_op {
($in:ident, $out:ident, $op_func:ident, $fallback_func:ident) => {
#[allow(unused_imports)]
use crate::{vec_unary_op, MutPtrLen, PtrLen};
assert!($in.len() == $out.len());
#[allow(unreachable_code)] // Ignore fallback, if unused
{
// Non-generic wrapper for `vec_unary_op` which instantiates the
// AVX + FMA version.
#[cfg(target_arch = "x86_64")]
#[target_feature(enable = "avx2")]
#[target_feature(enable = "fma")]
unsafe fn vec_unary_op_avx(xs: PtrLen<f32>, out: MutPtrLen<f32>) {
use std::arch::x86_64::__m256;
vec_unary_op(xs, out, |x: __m256| $op_func(x), 0. /* pad */);
}
#[cfg(target_arch = "x86_64")]
if is_x86_feature_detected!("fma") && is_x86_feature_detected!("avx2") {
// Safety: We've checked that AVX2 + FMA are available.
unsafe {
vec_unary_op_avx($in.into(), $out.into());
}
return;
}
#[cfg(target_arch = "wasm32")]
{
use crate::simd_vec::wasm::v128f;
// Safety: The WASM runtime will have verified SIMD instructions
// are accepted when loading the binary.
unsafe {
vec_unary_op(
$in.into(),
$out.into(),
|x: v128f| $op_func(x),
0., /* pad */
);
}
return;
}
#[cfg(target_arch = "aarch64")]
{
use std::arch::aarch64::float32x4_t;
unsafe {
vec_unary_op(
$in.into(),
$out.into(),
|x: float32x4_t| $op_func(x),
0., /* pad */
);
}
return;
}
// Generic fallback.
for (x, y) in $in.iter().zip($out.iter_mut()) {
*y = $fallback_func(*x);
}
}
};
($out:ident, $op_func:ident, $fallback_func:ident) => {
#[allow(unused_imports)]
use crate::{vec_unary_op, MutPtrLen, PtrLen};
#[allow(unreachable_code)] // Ignore fallback, if unused
{
// Non-generic wrapper for `vec_unary_op` which instantiates the
// AVX + FMA version.
#[cfg(target_arch = "x86_64")]
#[target_feature(enable = "avx2")]
#[target_feature(enable = "fma")]
unsafe fn vec_unary_op_avx(xs: PtrLen<f32>, out: MutPtrLen<f32>) {
use std::arch::x86_64::__m256;
vec_unary_op(xs, out, |x: __m256| $op_func(x), 0. /* pad */);
}
#[cfg(target_arch = "x86_64")]
if is_x86_feature_detected!("fma") && is_x86_feature_detected!("avx2") {
// Safety: We've checked that AVX2 + FMA are available.
unsafe {
vec_unary_op_avx($out.into(), $out.into());
}
return;
}
#[cfg(target_arch = "wasm32")]
{
use crate::simd_vec::wasm::v128f;
// Safety: The WASM runtime will have verified SIMD instructions
// are accepted when loading the binary.
unsafe {
vec_unary_op(
$out.into(),
$out.into(),
|x: v128f| $op_func(x),
0., /* pad */
);
}
return;
}
#[cfg(target_arch = "aarch64")]
{
use std::arch::aarch64::float32x4_t;
unsafe {
vec_unary_op(
$out.into(),
$out.into(),
|x: float32x4_t| $op_func(x),
0., /* pad */
);
}
return;
}
// Generic fallback.
for x in $out.iter_mut() {
*x = $fallback_func(*x);
}
}
};
}
pub(crate) use dispatch_unary_op;
/// Dispatch a SIMD function using the best available `SimdFloat` implementation
/// on the current system.
///
/// `$func` should be a function with a generic argument `S: SimdFloat`. `$in`
/// and `$out` are the function arguments.
macro_rules! dispatch_simd {
($func:ident, $in:expr, $out:expr) => {
#[allow(unused_imports)]
use crate::{MutPtrLen, PtrLen};
#[allow(unreachable_code)] // Ignore fallback, if unused
{
// Non-generic wrapper for `$func` which instantiates the AVX + FMA version.
#[cfg(target_arch = "x86_64")]
#[target_feature(enable = "avx2")]
#[target_feature(enable = "fma")]
unsafe fn simd_op_avx(xs: PtrLen<f32>, out: MutPtrLen<f32>) {
use std::arch::x86_64::__m256;
$func::<__m256>(xs, out);
}
#[cfg(target_arch = "x86_64")]
if is_x86_feature_detected!("fma") && is_x86_feature_detected!("avx2") {
// Safety: We've checked that AVX2 + FMA are available.
unsafe { simd_op_avx($in, $out) };
return;
}
#[cfg(target_arch = "wasm32")]
{
use crate::simd_vec::wasm::v128f;
// Safety: The WASM runtime will have verified SIMD instructions
// are accepted when loading the binary.
unsafe { $func::<v128f>($in, $out) };
return;
}
#[cfg(target_arch = "aarch64")]
{
use std::arch::aarch64::float32x4_t;
unsafe { $func::<float32x4_t>($in, $out) };
return;
}
// Generic fallback.
unsafe { $func::<f32>($in, $out) };
}
};
}
pub(crate) use dispatch_simd;