1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
use smallvec::SmallVec;

use std::fmt::Debug;
use std::ops::{Range, RangeFrom, RangeFull, RangeTo};

/// Specifies a subset of a dimension to include when slicing a tensor or view.
///
/// Can be constructed from an index or range using `index_or_range.into()`.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SliceItem {
    /// Extract a specific index from a dimension.
    ///
    /// The number of dimensions in the sliced view will be one minus the number
    /// of dimensions sliced with an index. If the index is negative, it counts
    /// back from the end of the dimension.
    Index(isize),

    /// Include a subset of the range of the dimension.
    Range(SliceRange),
}

impl SliceItem {
    /// Return a SliceItem that extracts the full range of a dimension.
    #[inline]
    pub fn full_range() -> Self {
        (..).into()
    }

    /// Return a SliceItem that extracts part of an axis.
    #[inline]
    pub fn range(start: isize, end: Option<isize>, step: isize) -> SliceItem {
        SliceItem::Range(SliceRange::new(start, end, step))
    }

    /// Return stepped index range selected by this item from an axis with a
    /// given size.
    pub(crate) fn index_range(&self, dim_size: usize) -> IndexRange {
        let range = match *self {
            SliceItem::Range(range) => range,
            SliceItem::Index(idx) => SliceRange::new(idx, Some(idx + 1), 1),
        };
        range.index_range(dim_size)
    }
}

// This conversion exists to avoid ambiguity when slicing a tensor with a
// numeric literal of unspecified type (eg. `tensor.slice((0, 0))`). In this
// case it is ambiguous which `SliceItem::from` should be used, but the i32
// case is used if it exists.
impl From<i32> for SliceItem {
    #[inline]
    fn from(value: i32) -> Self {
        SliceItem::Index(value as isize)
    }
}

impl From<isize> for SliceItem {
    #[inline]
    fn from(value: isize) -> Self {
        SliceItem::Index(value)
    }
}

impl From<usize> for SliceItem {
    #[inline]
    fn from(value: usize) -> Self {
        SliceItem::Index(value as isize)
    }
}

impl<R> From<R> for SliceItem
where
    R: Into<SliceRange>,
{
    fn from(value: R) -> Self {
        SliceItem::Range(value.into())
    }
}

/// Used to convert sequences of indices and/or ranges into a uniform
/// `[SliceItem]` array that can be used to slice a tensor.
///
/// This trait is implemented for:
///
///  - Individual indices and ranges (types satisfying `Into<SliceItem>`)
///  - Arrays of indices or ranges
///  - Tuples of indices and/or ranges
///  - `[SliceItem]` slices
///
/// Ranges can be specified using regular Rust ranges (eg. `start..end`,
/// `start..`, `..end`, `..`) or a [SliceRange], which extends regular Rust
/// ranges with support for steps and specifying endpoints using negative
/// values, which behaves similarly to using negative values in NumPy.
pub trait IntoSliceItems {
    type Array: AsRef<[SliceItem]>;

    fn into_slice_items(self) -> Self::Array;
}

impl<'a> IntoSliceItems for &'a [SliceItem] {
    type Array = &'a [SliceItem];

    fn into_slice_items(self) -> &'a [SliceItem] {
        self
    }
}

impl<const N: usize, T: Into<SliceItem>> IntoSliceItems for [T; N] {
    type Array = [SliceItem; N];

    fn into_slice_items(self) -> [SliceItem; N] {
        self.map(|x| x.into())
    }
}

impl<T: Into<SliceItem>> IntoSliceItems for T {
    type Array = [SliceItem; 1];

    fn into_slice_items(self) -> [SliceItem; 1] {
        [self.into()]
    }
}

impl<T1: Into<SliceItem>> IntoSliceItems for (T1,) {
    type Array = [SliceItem; 1];

    fn into_slice_items(self) -> [SliceItem; 1] {
        [self.0.into()]
    }
}

impl<T1: Into<SliceItem>, T2: Into<SliceItem>> IntoSliceItems for (T1, T2) {
    type Array = [SliceItem; 2];

    fn into_slice_items(self) -> [SliceItem; 2] {
        [self.0.into(), self.1.into()]
    }
}

impl<T1: Into<SliceItem>, T2: Into<SliceItem>, T3: Into<SliceItem>> IntoSliceItems
    for (T1, T2, T3)
{
    type Array = [SliceItem; 3];

    fn into_slice_items(self) -> [SliceItem; 3] {
        [self.0.into(), self.1.into(), self.2.into()]
    }
}

impl<T1: Into<SliceItem>, T2: Into<SliceItem>, T3: Into<SliceItem>, T4: Into<SliceItem>>
    IntoSliceItems for (T1, T2, T3, T4)
{
    type Array = [SliceItem; 4];

    fn into_slice_items(self) -> [SliceItem; 4] {
        [self.0.into(), self.1.into(), self.2.into(), self.3.into()]
    }
}

/// Dynamically sized array of [SliceItem]s, which avoids allocating in the
/// common case where the length is small.
pub type DynSliceItems = SmallVec<[SliceItem; 5]>;

/// Convert a slice of indices into [SliceItem]s.
///
/// To convert indices of a statically known length to [SliceItem]s, use
/// [IntoSliceItems] instead. This function is for the case when the length
/// is not statically known, but is assumed to likely be small.
pub fn to_slice_items<T: Clone + Into<SliceItem>>(index: &[T]) -> DynSliceItems {
    index.iter().map(|x| x.clone().into()).collect()
}

/// A range for slicing a [Tensor](crate::Tensor) or [NdTensor](crate::NdTensor).
///
/// This has two main differences from [Range].
///
/// - A non-zero step between indices can be specified. The step can be negative,
///   which means that the dimension should be traversed in reverse order.
/// - The `start` and `end` indexes can also be negative, in which case they
///   count backwards from the end of the array.
///
/// This system for specifying slicing and indexing follows NumPy, which in
/// turn strongly influenced slicing in ONNX.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SliceRange {
    /// First index in range.
    pub start: isize,

    /// Last index (exclusive) in range, or None if the range extends to the
    /// end of a dimension.
    pub end: Option<isize>,

    /// The steps between adjacent elements selected by this range. This
    /// is private so this module can enforce the invariant that it is non-zero.
    step: isize,
}

impl SliceRange {
    /// Create a new range from `start` to `end`. The `start` index is inclusive
    /// and the `end` value is exclusive. If `end` is None, the range spans
    /// to the end of the dimension.
    ///
    /// Panics if the `step` size is 0.
    #[inline]
    pub fn new(start: isize, end: Option<isize>, step: isize) -> SliceRange {
        assert!(step != 0, "Slice step cannot be 0");
        SliceRange { start, end, step }
    }

    /// Return the number of elements that would be retained if using this range
    /// to slice a dimension of size `dim_size`.
    pub fn steps(&self, dim_size: usize) -> usize {
        let clamped = self.clamp(dim_size);

        let start_idx = Self::offset_from_start(clamped.start, dim_size);
        let end_idx = clamped
            .end
            .map(|index| Self::offset_from_start(index, dim_size))
            .unwrap_or(if self.step > 0 { dim_size as isize } else { -1 });

        if (clamped.step > 0 && end_idx <= start_idx) || (clamped.step < 0 && end_idx >= start_idx)
        {
            return 0;
        }

        let steps = if clamped.step > 0 {
            1 + (end_idx - start_idx - 1) / clamped.step
        } else {
            1 + (start_idx - end_idx - 1) / -clamped.step
        };

        steps.max(0) as usize
    }

    /// Return a copy of this range with indexes adjusted so that they are valid
    /// for a tensor dimension of size `dim_size`.
    ///
    /// Valid indexes depend on direction that the dimension is traversed
    /// (forwards if `self.step` is positive or backwards if negative). They
    /// start at the first element going in that direction and end after the
    /// last element.
    pub fn clamp(&self, dim_size: usize) -> SliceRange {
        let len = dim_size as isize;

        let min_idx;
        let max_idx;

        if self.step > 0 {
            // When traversing forwards, the range of valid +ve indexes is `[0,
            // len]` and for -ve indexes `[-len, -1]`.
            min_idx = -len;
            max_idx = len;
        } else {
            // When traversing backwards, the range of valid +ve indexes are
            // `[0, len-1]` and for -ve indexes `[-len-1, -1]`.
            min_idx = -len - 1;
            max_idx = len - 1;
        }

        SliceRange::new(
            self.start.clamp(min_idx, max_idx),
            self.end.map(|e| e.clamp(min_idx, max_idx)),
            self.step,
        )
    }

    pub fn step(&self) -> isize {
        self.step
    }

    /// Clamp this range so that it is valid for a dimension of size `dim_size`
    /// and resolve it to a positive range.
    ///
    /// This method is useful for implementing Python/NumPy-style slicing where
    /// range endpoints can be out of bounds.
    pub fn resolve_clamped(&self, dim_size: usize) -> Range<usize> {
        self.clamp(dim_size).resolve(dim_size).unwrap()
    }

    /// Resolve the range endpoints to a positive range in `[0, dim_size)`.
    ///
    /// Returns the range if resolved or None if out of bounds.
    ///
    /// If `self.step` is positive, the returned range counts forwards from
    /// the first index of the dimension, otherwise it counts backwards from
    /// the last index.
    #[inline]
    pub fn resolve(&self, dim_size: usize) -> Option<Range<usize>> {
        let (start, end) = if self.step > 0 {
            let start = Self::offset_from_start(self.start, dim_size);
            let end = self
                .end
                .map(|end| Self::offset_from_start(end, dim_size))
                .unwrap_or(dim_size as isize);
            (start, end)
        } else {
            let start = Self::offset_from_end(self.start, dim_size);
            let end = self
                .end
                .map(|end| Self::offset_from_end(end, dim_size))
                .unwrap_or(dim_size as isize);
            (start, end)
        };

        if start >= 0 && start <= dim_size as isize && end >= 0 && end <= dim_size as isize {
            // If `end < start` this means the range is empty. Set `end ==
            // start` to have a canonical representation for this case.
            let end = end.max(start);

            Some(start as usize..end as usize)
        } else {
            None
        }
    }

    /// Return stepped index range selected by this range from an axis with a
    /// given size.
    pub(crate) fn index_range(&self, dim_size: usize) -> IndexRange {
        // Resolve range endpoints to `[0, N]`, counting forwards from the
        // start if step > 0 or backwards from the end otherwise.
        let resolved = self.resolve_clamped(dim_size);

        if self.step > 0 {
            IndexRange::new(resolved.start, resolved.end as isize, self.step)
        } else {
            IndexRange::new(
                dim_size - 1 - resolved.start,
                dim_size as isize - 1 - resolved.end as isize,
                self.step,
            )
        }
    }

    /// Resolve an index to an offset from the first index of the dimension.
    #[inline]
    fn offset_from_start(index: isize, dim_size: usize) -> isize {
        if index >= 0 {
            index
        } else {
            dim_size as isize + index
        }
    }

    /// Resolve an index to an offset from the last index of the dimension.
    #[inline]
    fn offset_from_end(index: isize, dim_size: usize) -> isize {
        if index >= 0 {
            dim_size as isize - 1 - index
        } else {
            -index - 1
        }
    }
}

impl<T> From<Range<T>> for SliceRange
where
    T: TryInto<isize>,
    <T as TryInto<isize>>::Error: Debug,
{
    fn from(r: Range<T>) -> SliceRange {
        let start = r.start.try_into().unwrap();
        let end = r.end.try_into().unwrap();
        SliceRange::new(start, Some(end), 1)
    }
}

impl<T> From<RangeTo<T>> for SliceRange
where
    T: TryInto<isize>,
    <T as TryInto<isize>>::Error: Debug,
{
    fn from(r: RangeTo<T>) -> SliceRange {
        let end = r.end.try_into().unwrap();
        SliceRange::new(0, Some(end), 1)
    }
}

impl<T> From<RangeFrom<T>> for SliceRange
where
    T: TryInto<isize>,
    <T as TryInto<isize>>::Error: Debug,
{
    fn from(r: RangeFrom<T>) -> SliceRange {
        let start = r.start.try_into().unwrap();
        SliceRange::new(start, None, 1)
    }
}

impl From<RangeFull> for SliceRange {
    #[inline]
    fn from(_: RangeFull) -> SliceRange {
        SliceRange::new(0, None, 1)
    }
}

/// A range of indices with a step, which may be positive or negative.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct IndexRange {
    /// Start index in [0, (dim_size - 1).max(0)]
    start: usize,

    /// End index in [-1, dim_size]
    end: isize,
    step: isize,
}

impl IndexRange {
    /// Create a new range which steps from `start` (inclusive) to `end`
    /// (exclusive) with a given step.
    ///
    /// The `step` value must not be zero.
    ///
    /// The `end` argument is signed to allow for a range which yields index 0
    /// when `step` is negative. eg. `SteppedIndexRange::new(4, -1, -1)` will
    /// yield indices `[4, 3, 2, 1, 0]`.
    fn new(start: usize, end: isize, step: isize) -> Self {
        assert!(step != 0);
        assert!(start <= isize::MAX as usize);

        IndexRange {
            start,
            end: end.max(-1),
            step,
        }
    }

    /// Return the start index.
    #[allow(unused)]
    pub fn start(&self) -> usize {
        self.start
    }

    /// Return the index that is one past the end. This is signed since this
    /// index can be -1 when `self.step() < 0`.
    #[allow(unused)]
    pub fn end(&self) -> isize {
        self.end
    }

    /// Return the increment between indices.
    #[allow(unused)]
    pub fn step(&self) -> isize {
        self.step
    }

    /// Return the number of steps along this dimension.
    pub fn steps(&self) -> usize {
        let len = if self.step > 0 {
            (self.end - self.start as isize).max(0).unsigned_abs()
        } else {
            (self.end - self.start as isize).min(0).unsigned_abs()
        };
        len.div_ceil(self.step.unsigned_abs())
    }
}

impl IntoIterator for IndexRange {
    type Item = usize;
    type IntoIter = IndexRangeIter;

    #[inline]
    fn into_iter(self) -> IndexRangeIter {
        IndexRangeIter {
            step: self.step,
            index: self.start as isize,
            remaining: self.steps(),
        }
    }
}

/// An iterator over the indices in an [IndexRange].
#[derive(Clone, Debug, PartialEq)]
pub struct IndexRangeIter {
    /// Next index. This is in the range [-1, N] where `N` is the size of
    /// the dimension. The values yielded by `next` are always in [0, N).
    index: isize,

    /// Remaining indices to yield.
    remaining: usize,

    step: isize,
}

impl Iterator for IndexRangeIter {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<usize> {
        if self.remaining == 0 {
            return None;
        }
        let idx = self.index;
        self.index += self.step;
        self.remaining -= 1;
        Some(idx as usize)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining, Some(self.remaining))
    }
}

impl ExactSizeIterator for IndexRangeIter {}
impl std::iter::FusedIterator for IndexRangeIter {}

#[cfg(test)]
mod tests {
    use super::{IntoSliceItems, SliceItem, SliceRange};

    #[test]
    fn test_into_slice_items() {
        let x = (42).into_slice_items();
        assert_eq!(x, [SliceItem::Index(42)]);

        let x = (2..5).into_slice_items();
        assert_eq!(x, [SliceItem::Range((2..5).into())]);

        let x = (..5).into_slice_items();
        assert_eq!(x, [SliceItem::Range((0..5).into())]);

        let x = (3..).into_slice_items();
        assert_eq!(x, [SliceItem::Range((3..).into())]);

        let x = [1].into_slice_items();
        assert_eq!(x, [SliceItem::Index(1)]);
        let x = [1, 2].into_slice_items();
        assert_eq!(x, [SliceItem::Index(1), SliceItem::Index(2)]);

        let x = (0, 1..2, ..).into_slice_items();
        assert_eq!(
            x,
            [
                SliceItem::Index(0),
                SliceItem::Range((1..2).into()),
                SliceItem::full_range()
            ]
        );
    }

    #[test]
    fn test_index_range() {
        struct Case {
            range: SliceItem,
            dim_size: usize,
            indices: Vec<usize>,
        }

        let cases = [
            // +ve step, +ve endpoints
            Case {
                range: SliceItem::range(0, Some(4), 1),
                dim_size: 6,
                indices: (0..4).collect(),
            },
            Case {
                range: SliceItem::range(2, Some(4), 1),
                dim_size: 6,
                indices: vec![2, 3],
            },
            Case {
                range: SliceItem::range(2, Some(128), 1),
                dim_size: 5,
                indices: vec![2, 3, 4],
            },
            // +ve step > 1, +ve endpoints
            Case {
                range: SliceItem::range(0, Some(5), 2),
                dim_size: 5,
                indices: vec![0, 2, 4],
            },
            // +ve step, no end
            Case {
                range: SliceItem::range(0, None, 1),
                dim_size: 6,
                indices: (0..6).collect(),
            },
            // +ve step, -ve endpoints
            Case {
                range: SliceItem::range(-1, Some(-6), 2),
                dim_size: 5,
                indices: vec![],
            },
            // -ve step, -ve endpoints
            Case {
                range: SliceItem::range(-1, Some(-128), -1),
                dim_size: 5,
                indices: vec![4, 3, 2, 1, 0],
            },
            // -ve step, no end
            Case {
                range: SliceItem::range(-1, None, -1),
                dim_size: 5,
                indices: vec![4, 3, 2, 1, 0],
            },
            // -ve step < -1, -ve endpoints
            Case {
                range: SliceItem::range(-1, Some(-6), -2),
                dim_size: 5,
                indices: vec![4, 2, 0],
            },
            // -ve step, +ve endpoints
            Case {
                range: SliceItem::range(1, Some(5), -2),
                dim_size: 5,
                indices: vec![],
            },
            // Empty range, +ve step
            Case {
                range: SliceItem::range(0, Some(0), 1),
                dim_size: 4,
                indices: vec![],
            },
            // Empty range, -ve step
            Case {
                range: SliceItem::range(0, Some(0), -1),
                dim_size: 4,
                indices: vec![],
            },
            // Single index
            Case {
                range: SliceItem::Index(2),
                dim_size: 4,
                indices: vec![2],
            },
            // Single index, out of range
            Case {
                range: SliceItem::Index(2),
                dim_size: 0,
                indices: vec![],
            },
        ];

        for Case {
            range,
            dim_size,
            indices,
        } in cases
        {
            let mut index_iter = range.index_range(dim_size).into_iter();
            let size_hint = index_iter.size_hint();
            let index_vec: Vec<_> = index_iter.by_ref().collect();

            assert_eq!(size_hint, (index_vec.len(), Some(index_vec.len())));
            assert_eq!(index_vec, indices);
            assert_eq!(index_iter.size_hint(), (0, Some(0)));
        }
    }

    #[test]
    fn test_index_range_steps() {
        struct Case {
            range: SliceRange,
            dim_size: usize,
            steps: usize,
        }

        let cases = [
            // Positive step, no end.
            Case {
                range: SliceRange::new(0, None, 1),
                dim_size: 4,
                steps: 4,
            },
            // Positive step size exceeds range length.
            Case {
                range: SliceRange::new(0, None, 5),
                dim_size: 4,
                steps: 1,
            },
            // Negative step, no end.
            Case {
                range: SliceRange::new(-1, None, -1),
                dim_size: 3,
                steps: 3,
            },
            // Negative step size exceeds range length.
            Case {
                range: SliceRange::new(1, Some(0), -2),
                dim_size: 2,
                steps: 1,
            },
        ];

        for Case {
            range,
            dim_size,
            steps,
        } in cases
        {
            assert_eq!(range.index_range(dim_size).steps(), steps);
        }
    }

    #[test]
    #[should_panic(expected = "Slice step cannot be 0")]
    fn test_slice_range_zero_step() {
        SliceRange::new(0, None, 0);
    }

    #[test]
    fn test_slice_range_resolve() {
        // +ve endpoints, +ve step
        assert_eq!(SliceRange::new(0, Some(5), 1).resolve_clamped(10), 0..5);
        assert_eq!(SliceRange::new(0, None, 1).resolve_clamped(10), 0..10);
        assert_eq!(SliceRange::new(15, Some(20), 1).resolve_clamped(10), 10..10);
        assert_eq!(SliceRange::new(15, Some(20), 1).resolve(10), None);
        assert_eq!(SliceRange::new(4, None, 1).resolve(3), None);
        assert_eq!(SliceRange::new(0, Some(10), 1).resolve(3), None);

        // -ve endpoints, +ve step
        assert_eq!(SliceRange::new(-5, Some(-1), 1).resolve_clamped(10), 5..9);
        assert_eq!(SliceRange::new(-20, Some(-1), 1).resolve_clamped(10), 0..9);
        assert_eq!(SliceRange::new(-20, Some(-1), 1).resolve(10), None);
        assert_eq!(SliceRange::new(-5, None, 1).resolve_clamped(10), 5..10);

        // +ve endpoints, -ve step.
        //
        // Note the returned ranges count backwards from the end of the
        // dimension.
        assert_eq!(SliceRange::new(5, Some(0), -1).resolve_clamped(10), 4..9);
        assert_eq!(SliceRange::new(5, None, -1).resolve_clamped(10), 4..10);
        assert_eq!(SliceRange::new(9, None, -1).resolve_clamped(10), 0..10);

        // -ve endpoints, -ve step.
        assert_eq!(SliceRange::new(-1, Some(-4), -1).resolve_clamped(3), 0..3);
        assert_eq!(SliceRange::new(-1, None, -1).resolve_clamped(2), 0..2);
    }
}