1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
use smallvec::SmallVec;
use std::fmt::Debug;
use std::ops::{Range, RangeFrom, RangeFull, RangeTo};
/// Specifies a subset of a dimension to include when slicing a tensor or view.
///
/// Can be constructed from an index or range using `index_or_range.into()`.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SliceItem {
/// Extract a specific index from a dimension.
///
/// The number of dimensions in the sliced view will be one minus the number
/// of dimensions sliced with an index. If the index is negative, it counts
/// back from the end of the dimension.
Index(isize),
/// Include a subset of the range of the dimension.
Range(SliceRange),
}
impl SliceItem {
/// Return a SliceItem that extracts the full range of a dimension.
#[inline]
pub fn full_range() -> Self {
(..).into()
}
/// Return a SliceItem that extracts part of an axis.
#[inline]
pub fn range(start: isize, end: Option<isize>, step: isize) -> SliceItem {
SliceItem::Range(SliceRange::new(start, end, step))
}
/// Return stepped index range selected by this item from an axis with a
/// given size.
pub(crate) fn index_range(&self, dim_size: usize) -> IndexRange {
let range = match *self {
SliceItem::Range(range) => range,
SliceItem::Index(idx) => SliceRange::new(idx, Some(idx + 1), 1),
};
range.index_range(dim_size)
}
}
// This conversion exists to avoid ambiguity when slicing a tensor with a
// numeric literal of unspecified type (eg. `tensor.slice((0, 0))`). In this
// case it is ambiguous which `SliceItem::from` should be used, but the i32
// case is used if it exists.
impl From<i32> for SliceItem {
#[inline]
fn from(value: i32) -> Self {
SliceItem::Index(value as isize)
}
}
impl From<isize> for SliceItem {
#[inline]
fn from(value: isize) -> Self {
SliceItem::Index(value)
}
}
impl From<usize> for SliceItem {
#[inline]
fn from(value: usize) -> Self {
SliceItem::Index(value as isize)
}
}
impl<R> From<R> for SliceItem
where
R: Into<SliceRange>,
{
fn from(value: R) -> Self {
SliceItem::Range(value.into())
}
}
/// Used to convert sequences of indices and/or ranges into a uniform
/// `[SliceItem]` array that can be used to slice a tensor.
///
/// This trait is implemented for:
///
/// - Individual indices and ranges (types satisfying `Into<SliceItem>`)
/// - Arrays of indices or ranges
/// - Tuples of indices and/or ranges
/// - `[SliceItem]` slices
///
/// Ranges can be specified using regular Rust ranges (eg. `start..end`,
/// `start..`, `..end`, `..`) or a [SliceRange], which extends regular Rust
/// ranges with support for steps and specifying endpoints using negative
/// values, which behaves similarly to using negative values in NumPy.
pub trait IntoSliceItems {
type Array: AsRef<[SliceItem]>;
fn into_slice_items(self) -> Self::Array;
}
impl<'a> IntoSliceItems for &'a [SliceItem] {
type Array = &'a [SliceItem];
fn into_slice_items(self) -> &'a [SliceItem] {
self
}
}
impl<const N: usize, T: Into<SliceItem>> IntoSliceItems for [T; N] {
type Array = [SliceItem; N];
fn into_slice_items(self) -> [SliceItem; N] {
self.map(|x| x.into())
}
}
impl<T: Into<SliceItem>> IntoSliceItems for T {
type Array = [SliceItem; 1];
fn into_slice_items(self) -> [SliceItem; 1] {
[self.into()]
}
}
impl<T1: Into<SliceItem>> IntoSliceItems for (T1,) {
type Array = [SliceItem; 1];
fn into_slice_items(self) -> [SliceItem; 1] {
[self.0.into()]
}
}
impl<T1: Into<SliceItem>, T2: Into<SliceItem>> IntoSliceItems for (T1, T2) {
type Array = [SliceItem; 2];
fn into_slice_items(self) -> [SliceItem; 2] {
[self.0.into(), self.1.into()]
}
}
impl<T1: Into<SliceItem>, T2: Into<SliceItem>, T3: Into<SliceItem>> IntoSliceItems
for (T1, T2, T3)
{
type Array = [SliceItem; 3];
fn into_slice_items(self) -> [SliceItem; 3] {
[self.0.into(), self.1.into(), self.2.into()]
}
}
impl<T1: Into<SliceItem>, T2: Into<SliceItem>, T3: Into<SliceItem>, T4: Into<SliceItem>>
IntoSliceItems for (T1, T2, T3, T4)
{
type Array = [SliceItem; 4];
fn into_slice_items(self) -> [SliceItem; 4] {
[self.0.into(), self.1.into(), self.2.into(), self.3.into()]
}
}
/// Dynamically sized array of [SliceItem]s, which avoids allocating in the
/// common case where the length is small.
pub type DynSliceItems = SmallVec<[SliceItem; 5]>;
/// Convert a slice of indices into [SliceItem]s.
///
/// To convert indices of a statically known length to [SliceItem]s, use
/// [IntoSliceItems] instead. This function is for the case when the length
/// is not statically known, but is assumed to likely be small.
pub fn to_slice_items<T: Clone + Into<SliceItem>>(index: &[T]) -> DynSliceItems {
index.iter().map(|x| x.clone().into()).collect()
}
/// A range for slicing a [Tensor](crate::Tensor) or [NdTensor](crate::NdTensor).
///
/// This has two main differences from [Range].
///
/// - A non-zero step between indices can be specified. The step can be negative,
/// which means that the dimension should be traversed in reverse order.
/// - The `start` and `end` indexes can also be negative, in which case they
/// count backwards from the end of the array.
///
/// This system for specifying slicing and indexing follows NumPy, which in
/// turn strongly influenced slicing in ONNX.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct SliceRange {
/// First index in range.
pub start: isize,
/// Last index (exclusive) in range, or None if the range extends to the
/// end of a dimension.
pub end: Option<isize>,
/// The steps between adjacent elements selected by this range. This
/// is private so this module can enforce the invariant that it is non-zero.
step: isize,
}
impl SliceRange {
/// Create a new range from `start` to `end`. The `start` index is inclusive
/// and the `end` value is exclusive. If `end` is None, the range spans
/// to the end of the dimension.
///
/// Panics if the `step` size is 0.
#[inline]
pub fn new(start: isize, end: Option<isize>, step: isize) -> SliceRange {
assert!(step != 0, "Slice step cannot be 0");
SliceRange { start, end, step }
}
/// Return the number of elements that would be retained if using this range
/// to slice a dimension of size `dim_size`.
pub fn steps(&self, dim_size: usize) -> usize {
let clamped = self.clamp(dim_size);
let start_idx = Self::offset_from_start(clamped.start, dim_size);
let end_idx = clamped
.end
.map(|index| Self::offset_from_start(index, dim_size))
.unwrap_or(if self.step > 0 { dim_size as isize } else { -1 });
if (clamped.step > 0 && end_idx <= start_idx) || (clamped.step < 0 && end_idx >= start_idx)
{
return 0;
}
let steps = if clamped.step > 0 {
1 + (end_idx - start_idx - 1) / clamped.step
} else {
1 + (start_idx - end_idx - 1) / -clamped.step
};
steps.max(0) as usize
}
/// Return a copy of this range with indexes adjusted so that they are valid
/// for a tensor dimension of size `dim_size`.
///
/// Valid indexes depend on direction that the dimension is traversed
/// (forwards if `self.step` is positive or backwards if negative). They
/// start at the first element going in that direction and end after the
/// last element.
pub fn clamp(&self, dim_size: usize) -> SliceRange {
let len = dim_size as isize;
let min_idx;
let max_idx;
if self.step > 0 {
// When traversing forwards, the range of valid +ve indexes is `[0,
// len]` and for -ve indexes `[-len, -1]`.
min_idx = -len;
max_idx = len;
} else {
// When traversing backwards, the range of valid +ve indexes are
// `[0, len-1]` and for -ve indexes `[-len-1, -1]`.
min_idx = -len - 1;
max_idx = len - 1;
}
SliceRange::new(
self.start.clamp(min_idx, max_idx),
self.end.map(|e| e.clamp(min_idx, max_idx)),
self.step,
)
}
pub fn step(&self) -> isize {
self.step
}
/// Clamp this range so that it is valid for a dimension of size `dim_size`
/// and resolve it to a positive range.
///
/// This method is useful for implementing Python/NumPy-style slicing where
/// range endpoints can be out of bounds.
pub fn resolve_clamped(&self, dim_size: usize) -> Range<usize> {
self.clamp(dim_size).resolve(dim_size).unwrap()
}
/// Resolve the range endpoints to a positive range in `[0, dim_size)`.
///
/// Returns the range if resolved or None if out of bounds.
///
/// If `self.step` is positive, the returned range counts forwards from
/// the first index of the dimension, otherwise it counts backwards from
/// the last index.
#[inline]
pub fn resolve(&self, dim_size: usize) -> Option<Range<usize>> {
let (start, end) = if self.step > 0 {
let start = Self::offset_from_start(self.start, dim_size);
let end = self
.end
.map(|end| Self::offset_from_start(end, dim_size))
.unwrap_or(dim_size as isize);
(start, end)
} else {
let start = Self::offset_from_end(self.start, dim_size);
let end = self
.end
.map(|end| Self::offset_from_end(end, dim_size))
.unwrap_or(dim_size as isize);
(start, end)
};
if start >= 0 && start <= dim_size as isize && end >= 0 && end <= dim_size as isize {
// If `end < start` this means the range is empty. Set `end ==
// start` to have a canonical representation for this case.
let end = end.max(start);
Some(start as usize..end as usize)
} else {
None
}
}
/// Return stepped index range selected by this range from an axis with a
/// given size.
pub(crate) fn index_range(&self, dim_size: usize) -> IndexRange {
// Resolve range endpoints to `[0, N]`, counting forwards from the
// start if step > 0 or backwards from the end otherwise.
let resolved = self.resolve_clamped(dim_size);
if self.step > 0 {
IndexRange::new(resolved.start, resolved.end as isize, self.step)
} else {
IndexRange::new(
dim_size - 1 - resolved.start,
dim_size as isize - 1 - resolved.end as isize,
self.step,
)
}
}
/// Resolve an index to an offset from the first index of the dimension.
#[inline]
fn offset_from_start(index: isize, dim_size: usize) -> isize {
if index >= 0 {
index
} else {
dim_size as isize + index
}
}
/// Resolve an index to an offset from the last index of the dimension.
#[inline]
fn offset_from_end(index: isize, dim_size: usize) -> isize {
if index >= 0 {
dim_size as isize - 1 - index
} else {
-index - 1
}
}
}
impl<T> From<Range<T>> for SliceRange
where
T: TryInto<isize>,
<T as TryInto<isize>>::Error: Debug,
{
fn from(r: Range<T>) -> SliceRange {
let start = r.start.try_into().unwrap();
let end = r.end.try_into().unwrap();
SliceRange::new(start, Some(end), 1)
}
}
impl<T> From<RangeTo<T>> for SliceRange
where
T: TryInto<isize>,
<T as TryInto<isize>>::Error: Debug,
{
fn from(r: RangeTo<T>) -> SliceRange {
let end = r.end.try_into().unwrap();
SliceRange::new(0, Some(end), 1)
}
}
impl<T> From<RangeFrom<T>> for SliceRange
where
T: TryInto<isize>,
<T as TryInto<isize>>::Error: Debug,
{
fn from(r: RangeFrom<T>) -> SliceRange {
let start = r.start.try_into().unwrap();
SliceRange::new(start, None, 1)
}
}
impl From<RangeFull> for SliceRange {
#[inline]
fn from(_: RangeFull) -> SliceRange {
SliceRange::new(0, None, 1)
}
}
/// A range of indices with a step, which may be positive or negative.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct IndexRange {
/// Start index in [0, (dim_size - 1).max(0)]
start: usize,
/// End index in [-1, dim_size]
end: isize,
step: isize,
}
impl IndexRange {
/// Create a new range which steps from `start` (inclusive) to `end`
/// (exclusive) with a given step.
///
/// The `step` value must not be zero.
///
/// The `end` argument is signed to allow for a range which yields index 0
/// when `step` is negative. eg. `SteppedIndexRange::new(4, -1, -1)` will
/// yield indices `[4, 3, 2, 1, 0]`.
fn new(start: usize, end: isize, step: isize) -> Self {
assert!(step != 0);
assert!(start <= isize::MAX as usize);
IndexRange {
start,
end: end.max(-1),
step,
}
}
/// Return the start index.
#[allow(unused)]
pub fn start(&self) -> usize {
self.start
}
/// Return the index that is one past the end. This is signed since this
/// index can be -1 when `self.step() < 0`.
#[allow(unused)]
pub fn end(&self) -> isize {
self.end
}
/// Return the increment between indices.
#[allow(unused)]
pub fn step(&self) -> isize {
self.step
}
/// Return the number of steps along this dimension.
pub fn steps(&self) -> usize {
let len = if self.step > 0 {
(self.end - self.start as isize).max(0).unsigned_abs()
} else {
(self.end - self.start as isize).min(0).unsigned_abs()
};
len.div_ceil(self.step.unsigned_abs())
}
}
impl IntoIterator for IndexRange {
type Item = usize;
type IntoIter = IndexRangeIter;
#[inline]
fn into_iter(self) -> IndexRangeIter {
IndexRangeIter {
step: self.step,
index: self.start as isize,
remaining: self.steps(),
}
}
}
/// An iterator over the indices in an [IndexRange].
#[derive(Clone, Debug, PartialEq)]
pub struct IndexRangeIter {
/// Next index. This is in the range [-1, N] where `N` is the size of
/// the dimension. The values yielded by `next` are always in [0, N).
index: isize,
/// Remaining indices to yield.
remaining: usize,
step: isize,
}
impl Iterator for IndexRangeIter {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<usize> {
if self.remaining == 0 {
return None;
}
let idx = self.index;
self.index += self.step;
self.remaining -= 1;
Some(idx as usize)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl ExactSizeIterator for IndexRangeIter {}
impl std::iter::FusedIterator for IndexRangeIter {}
#[cfg(test)]
mod tests {
use super::{IntoSliceItems, SliceItem, SliceRange};
#[test]
fn test_into_slice_items() {
let x = (42).into_slice_items();
assert_eq!(x, [SliceItem::Index(42)]);
let x = (2..5).into_slice_items();
assert_eq!(x, [SliceItem::Range((2..5).into())]);
let x = (..5).into_slice_items();
assert_eq!(x, [SliceItem::Range((0..5).into())]);
let x = (3..).into_slice_items();
assert_eq!(x, [SliceItem::Range((3..).into())]);
let x = [1].into_slice_items();
assert_eq!(x, [SliceItem::Index(1)]);
let x = [1, 2].into_slice_items();
assert_eq!(x, [SliceItem::Index(1), SliceItem::Index(2)]);
let x = (0, 1..2, ..).into_slice_items();
assert_eq!(
x,
[
SliceItem::Index(0),
SliceItem::Range((1..2).into()),
SliceItem::full_range()
]
);
}
#[test]
fn test_index_range() {
struct Case {
range: SliceItem,
dim_size: usize,
indices: Vec<usize>,
}
let cases = [
// +ve step, +ve endpoints
Case {
range: SliceItem::range(0, Some(4), 1),
dim_size: 6,
indices: (0..4).collect(),
},
Case {
range: SliceItem::range(2, Some(4), 1),
dim_size: 6,
indices: vec![2, 3],
},
Case {
range: SliceItem::range(2, Some(128), 1),
dim_size: 5,
indices: vec![2, 3, 4],
},
// +ve step > 1, +ve endpoints
Case {
range: SliceItem::range(0, Some(5), 2),
dim_size: 5,
indices: vec![0, 2, 4],
},
// +ve step, no end
Case {
range: SliceItem::range(0, None, 1),
dim_size: 6,
indices: (0..6).collect(),
},
// +ve step, -ve endpoints
Case {
range: SliceItem::range(-1, Some(-6), 2),
dim_size: 5,
indices: vec![],
},
// -ve step, -ve endpoints
Case {
range: SliceItem::range(-1, Some(-128), -1),
dim_size: 5,
indices: vec![4, 3, 2, 1, 0],
},
// -ve step, no end
Case {
range: SliceItem::range(-1, None, -1),
dim_size: 5,
indices: vec![4, 3, 2, 1, 0],
},
// -ve step < -1, -ve endpoints
Case {
range: SliceItem::range(-1, Some(-6), -2),
dim_size: 5,
indices: vec![4, 2, 0],
},
// -ve step, +ve endpoints
Case {
range: SliceItem::range(1, Some(5), -2),
dim_size: 5,
indices: vec![],
},
// Empty range, +ve step
Case {
range: SliceItem::range(0, Some(0), 1),
dim_size: 4,
indices: vec![],
},
// Empty range, -ve step
Case {
range: SliceItem::range(0, Some(0), -1),
dim_size: 4,
indices: vec![],
},
// Single index
Case {
range: SliceItem::Index(2),
dim_size: 4,
indices: vec![2],
},
// Single index, out of range
Case {
range: SliceItem::Index(2),
dim_size: 0,
indices: vec![],
},
];
for Case {
range,
dim_size,
indices,
} in cases
{
let mut index_iter = range.index_range(dim_size).into_iter();
let size_hint = index_iter.size_hint();
let index_vec: Vec<_> = index_iter.by_ref().collect();
assert_eq!(size_hint, (index_vec.len(), Some(index_vec.len())));
assert_eq!(index_vec, indices);
assert_eq!(index_iter.size_hint(), (0, Some(0)));
}
}
#[test]
fn test_index_range_steps() {
struct Case {
range: SliceRange,
dim_size: usize,
steps: usize,
}
let cases = [
// Positive step, no end.
Case {
range: SliceRange::new(0, None, 1),
dim_size: 4,
steps: 4,
},
// Positive step size exceeds range length.
Case {
range: SliceRange::new(0, None, 5),
dim_size: 4,
steps: 1,
},
// Negative step, no end.
Case {
range: SliceRange::new(-1, None, -1),
dim_size: 3,
steps: 3,
},
// Negative step size exceeds range length.
Case {
range: SliceRange::new(1, Some(0), -2),
dim_size: 2,
steps: 1,
},
];
for Case {
range,
dim_size,
steps,
} in cases
{
assert_eq!(range.index_range(dim_size).steps(), steps);
}
}
#[test]
#[should_panic(expected = "Slice step cannot be 0")]
fn test_slice_range_zero_step() {
SliceRange::new(0, None, 0);
}
#[test]
fn test_slice_range_resolve() {
// +ve endpoints, +ve step
assert_eq!(SliceRange::new(0, Some(5), 1).resolve_clamped(10), 0..5);
assert_eq!(SliceRange::new(0, None, 1).resolve_clamped(10), 0..10);
assert_eq!(SliceRange::new(15, Some(20), 1).resolve_clamped(10), 10..10);
assert_eq!(SliceRange::new(15, Some(20), 1).resolve(10), None);
assert_eq!(SliceRange::new(4, None, 1).resolve(3), None);
assert_eq!(SliceRange::new(0, Some(10), 1).resolve(3), None);
// -ve endpoints, +ve step
assert_eq!(SliceRange::new(-5, Some(-1), 1).resolve_clamped(10), 5..9);
assert_eq!(SliceRange::new(-20, Some(-1), 1).resolve_clamped(10), 0..9);
assert_eq!(SliceRange::new(-20, Some(-1), 1).resolve(10), None);
assert_eq!(SliceRange::new(-5, None, 1).resolve_clamped(10), 5..10);
// +ve endpoints, -ve step.
//
// Note the returned ranges count backwards from the end of the
// dimension.
assert_eq!(SliceRange::new(5, Some(0), -1).resolve_clamped(10), 4..9);
assert_eq!(SliceRange::new(5, None, -1).resolve_clamped(10), 4..10);
assert_eq!(SliceRange::new(9, None, -1).resolve_clamped(10), 0..10);
// -ve endpoints, -ve step.
assert_eq!(SliceRange::new(-1, Some(-4), -1).resolve_clamped(3), 0..3);
assert_eq!(SliceRange::new(-1, None, -1).resolve_clamped(2), 0..2);
}
}