1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
use crate::{re_error,noop,RError,RE,Stats,TriangMat,Vecg,MutVecg,VecVecg,VecVec};
use indxvec::Mutops;
use medians::Medianf64;
use rayon::prelude::*;

impl<T,U> VecVecg<T,U> for &[Vec<T>] 
    where T: Sync+Clone+PartialOrd+Into<f64>, 
    Vec<Vec<T>>: IntoParallelIterator,
    Vec<T>: IntoParallelIterator,
    U: Sync+Clone+PartialOrd+Into<f64>,
    Vec<Vec<U>>: IntoParallelIterator,
    Vec<U>: IntoParallelIterator {

    /// Applies scalar valued closure to all vectors in self and multiplies by their weights.
    /// Returns also the sum of weights.
    fn scalar_wfn(self, ws: &[U], f: impl Fn(&[T]) -> Result<f64,RE>)
        -> Result<(Vec<f64>,f64),RE> {
        let mut wsum = 0_f64;
        let resvec = self.iter().zip(ws).map(|(s,w)|-> Result<f64,RE> {
            let wf = w.clone().into();
            wsum += wf;
            Ok(wf*f(s)?) }).collect::<Result<Vec<f64>,RE>>()?;
        Ok((resvec,wsum))
    }

    /// Applies vector valued closure to all vectors in self and multiplies by their weights.
    /// Returns also the sum of weights
    fn vector_wfn(self, ws: &[U], f: impl Fn(&[T]) -> Result<Vec<f64>,RE>)
        -> Result<(Vec<Vec<f64>>,f64),RE> {
        let mut wsum = 0_f64;
        let resvecvec = self.iter().zip(ws).map(|(s,w)|-> Result<Vec<f64>,RE> {
            let wf = w.clone().into();
            wsum += wf;            
            Ok(f(s)?.smult(wf))}).collect::<Result<Vec<Vec<f64>>,RE>>()?;
        Ok((resvecvec,wsum))
    } 

    /// 1.0-dotproduct with **v**, in range [0,2] 
    fn divs(self, v: &[U]) -> Result<Vec<f64>,RE> { 
        if self.is_empty() { 
            return re_error("empty","divs given no points")?; }; 
        if self[0].len() != v.len() { 
            return re_error("size","divs dimensions mismatch")?; }; 
        let uv = v.vunit()?;
        self.scalar_fn(|p| Ok(1.0-p.vunit()?.dotp(&uv)))
    }

    /// median of weighted 1.0-dotproducts of **v**, with all in self
    fn wdivs(self, ws:&[U], v: &[f64]) -> Result<(Vec<f64>,f64),RE> { 
        if self.is_empty() { 
            return re_error("empty","wdivs given no points")?; }; 
        if self[0].len() != v.len() { 
            return re_error("size","wdivs dimensions mismatch")?; }; 
        let uv = v.vunit()?;
        self.scalar_wfn(ws,|p| Ok(1.0-p.vunit()?.dotp(&uv)))
    }

    /// median of weighted cos deviations from **v**
    fn wdivsmed(self, ws: &[U], v: &[f64]) -> Result<f64,RE> { 
        if self.is_empty() { 
            return re_error("empty","wmeddivs given no points")?; }; 
        if self[0].len() != v.len() { 
            return re_error("size","wmeddivs dimensions mismatch")?; }; 
        let (values,wsum) = self.wdivs(ws,v)?;
        Ok((self.len() as f64) * values.median()?/wsum)
    }
 
    /// weighted radii to all points in self
    fn wradii(self, ws:&[U], gm: &[f64]) -> Result<(Vec<f64>,f64),RE> {
        if self.is_empty() { 
            return re_error("empty","wradii given no points")?; }; 
        if self[0].len() != gm.len() { 
            return re_error("size","wradii dimensions mismatch")?; }; 
        self.scalar_wfn(ws, |p| Ok(p.vdist(gm)))
    }

    /// wmadgm median of weighted deviations from (weighted) gm: stable nd data spread estimator.
    fn wmadgm(self, ws: &[U], gm: &[f64]) -> Result<f64,RE> { 
        if self.is_empty() { 
            return re_error("empty","wmadgm given no points")?; }; 
        if self[0].len() != gm.len() { 
            return re_error("size","wmadgm dimensions mismatch")?; }; 
        let (values,wsum) = self.scalar_wfn(ws,|p| Ok(p.vdist(gm)))?;
        Ok((self.len() as f64) * values.median()?/wsum)
    }

    /// Rows of matrix self multiplying (column) vector v
    fn leftmultv(self,v: &[U]) -> Result<Vec<f64>,RE> {
        if self[0].len() != v.len() { 
            return re_error("DataError","leftmultv dimensions mismatch")?; };
        Ok(self.iter().map(|s| s.dotp(v)).collect())
    }

    /// Row vector v multipying columns of matrix self
    fn rightmultv(self,v: &[U]) -> Result<Vec<f64>,RE> {
        if v.len() != self.len() { 
            return re_error("DataError","rightmultv dimensions mismatch")?; }; 
        Ok((0..self[0].len()).map(|colnum| v.columnp(colnum,self)).collect())
    }

    /// Rectangular Matrices multiplication: self * m.
    /// Returns DataError if lengths of rows of self: `self[0].len()` 
    /// and columns of m: `m.len()` do not match.
    /// Result dimensions are self.len() x m[0].len() 
    fn matmult(self,m: &[Vec<U>]) -> Result<Vec<Vec<f64>>,RE> {
        if self[0].len() != m.len() { 
            return re_error("DataError","matmult dimensions mismatch")?; }; 
        Ok(self.par_iter().map(|srow| 
            (0..m[0].len()).map(|colnum| srow.columnp(colnum,m)).collect()
            ).collect::<Vec<Vec<f64>>>()) 
    }

    /// Weighted sum.  
    /// Weights are associated with vectors of self, not with coordinates
    fn wsumv(self,ws: &[U]) -> Vec<f64> {
        let mut resvec = vec![0_f64;self[0].len()]; 
        for (v,w) in self.iter().zip(ws) { 
            let weight:f64 = w.clone().into();
            for (res,component) in resvec.iter_mut().zip(v) {
                *res += weight*(component.clone().into()) }
        };
        resvec
    }

    /// Weighted Centre.  
    /// Weights are associated with points
    fn wacentroid(self,ws: &[U]) -> Vec<f64> {  
        let (sumvec,weightsum) = self
        .par_iter().zip(ws)
        .fold(
            || (vec![0_f64;self[0].len()], 0_f64),
            | mut pair: (Vec<f64>, f64), (p,w) | { 
                let weight:f64 = w.clone().into(); // saves converting twice 
                pair.0.mutvadd(&p.smult(weight));
                pair.1 += weight;
                pair
            }
        )
        .reduce(
            || (vec![0_f64; self[0].len()], 0_f64),
            | mut pairsum: (Vec<f64>, f64), pairin: (Vec<f64>, f64)| {
                pairsum.0.mutvadd::<f64>(&pairin.0);
                pairsum.1 += pairin.1;
                pairsum
            }
        );
        sumvec.smult(1./weightsum)
    }

    /// Trend computes the vector connecting the geometric medians of two sets of multidimensional points.
    /// This is a robust relationship between two unordered multidimensional sets.
    /// The two sets have to be in the same (dimensional) space but can have different numbers of points.
    fn trend(self, eps:f64, v:Vec<Vec<U>>) -> Result<Vec<f64>,RE> {
        if self[0].len() != v[0].len() { return Err(RError::DataError("trend dimensions mismatch".to_owned())); };
        let pair = rayon::join(||v.gmedian(eps),||self.gmedian(eps));
        Ok(pair.0.vsub::<f64>(&pair.1))
    }

    /// Translates the whole set by subtracting vector m.
    /// When m is set to the geometric median, this produces the zero median form.
    /// The geometric median is invariant with respect to rotation,
    /// unlike the often used mean (`acentroid` here), or the quasi median,
    /// both of which depend on the choice of axis.
     fn translate(self, m:&[U]) -> Result<Vec<Vec<f64>>,RE> { 
        if self[0].len() != m.len() { 
            return re_error("DataError","translate dimensions mismatch")?; }; 
        self.vector_fn(|s| Ok(s.vsub(m)))   
    }

    /// Weighted sums of points in each hemisphere.
    /// Uses only the points specified in idx (e.g. the convex hull).
    /// Self should normally be zero median vectors, i.e. `self.translate(&median)`
    fn wsigvec(self, idx: &[usize], ws:&[U]) -> Result<Vec<f64>,RE> { 
        let mut wsum = 0_f64; 
        let dims = self[0].len();
        if self.len() != ws.len() { return re_error("DataError","wsigvec: weights number mismatch")?; }; 
        let mut hemis = vec![0_f64; 2*dims]; 
        for &i in idx { 
            let wf:f64 = ws[i].clone().into();
            wsum += wf;
            for (j,component) in self[i].iter().enumerate() {
                let cf:f64 = component.clone().into();
                if cf < 0. { hemis[dims+j] -= wf*cf; }
                else { hemis[j] += wf*cf; };  
            };
        };
        for hem in &mut hemis { *hem /= wsum; };
        Ok(hemis)
    } 

    /// Dependencies of m on each vector in self
    /// m is typically a vector of outcomes.
    /// Factors out the entropy of m to save repetition of work
    fn dependencies(self, m:&[U]) -> Result<Vec<f64>,RE> {  
        if self[0].len() != m.len() { 
            return re_error("DataError","dependencies: dimensions mismatch")?; };
        let entropym = m.entropy();
        return self.par_iter().map(|s| -> Result<f64,RE> {  
            Ok((entropym + s.entropy())/
            s.jointentropy(m)?-1.0)}).collect() 
    }

    /// Individual distances from any point v, typically not a member, to all the members of self.    
    fn dists(self, v:&[U]) -> Result<Vec<f64>,RE> {
        if self[0].len() != v.len() { 
            return re_error("DataError","dists dimensions mismatch")?; }
        self.scalar_fn(|p| Ok(p.vdist(v)))
    }

    /// Sum of distances from any single point v, typically not a member, 
    /// to all members of self.    
    /// Geometric Median (gm) is defined as the point which minimises this function.
    /// This is relatively expensive measure to compute.
    /// The radius (distance) from gm is far more efficient, once gm has been found.
    fn distsum(self, v: &[U]) -> Result<f64,RE> {
        if self[0].len() != v.len() { 
            return re_error("DataError","distsum dimensions mismatch")?; }
        Ok(self.iter().map(|p| p.vdist(v)).sum::<f64>())
    }

    /// Sorted weighted radii to all member points from the Geometric Median.
    fn wsortedrads(self, ws: &[U], gm:&[f64]) -> Result<Vec<f64>,RE> {
        if self.len() != ws.len() { 
            return Err(RError::DataError("wsortedrads self and ws lengths mismatch".to_owned())); };
        if self[0].len() != gm.len() { 
            return Err(RError::DataError("wsortedrads self and gm dimensions mismatch".to_owned())); };
        let wf = ws.iter().map(|x| x.clone().into()).collect::<Vec<f64>>();
        let wnorm = 1.0 / wf.iter().sum::<f64>(); 
        let mut res = self.iter().map(|s| wnorm*s.vdist::<f64>(gm))
            .collect::<Vec<f64>>();
        res.muthashsort(noop);
        Ok(res)
    } 

    /// Like wgmparts, except only does one iteration from any non-member point g
    fn wnxnonmember(self, ws:&[U], g:&[f64]) -> Result<(Vec<f64>,Vec<f64>,f64),RE> {
        if self.len() != ws.len() { 
            return Err(RError::DataError("wnxnonmember and ws lengths mismatch".to_owned())); };
        if self[0].len() != g.len() { 
            return Err(RError::DataError("wnxnonmember self and gm dimensions mismatch".to_owned())); };
        // vsum is the sum vector of unit vectors towards the points
        let mut vsum = vec![0_f64; self[0].len()];
        let mut recip = 0_f64;
        for (x,w) in self.iter().zip(ws) { 
            // |x-p| done in-place for speed. Could have simply called x.vdist(p)
            let mag:f64 = x.iter().zip(g).map(|(xi,&gi)|(xi.clone().into()-gi).powi(2)).sum::<f64>(); 
            if mag.is_normal() { // ignore this point should distance be zero
                let rec = w.clone().into()/(mag.sqrt()); // reciprocal of distance (scalar)
                // vsum increments by components
                vsum.iter_mut().zip(x).for_each(|(vi,xi)| *vi += xi.clone().into()*rec); 
                 recip += rec // add separately the reciprocals for final scaling   
            }
        }
        Ok(( vsum.iter().map(|vi| vi / recip).collect::<Vec<f64>>(),        
            vsum,
            recip ))
    }    

    /// Weighted Geometric Median (gm) is the point that minimises the sum of distances to a given set of points.
    fn wgmedian(self, ws:&[U], eps: f64) -> Result<Vec<f64>,RE> { 
        if self.len() != ws.len() { 
            return Err(RError::DataError("wgmedian and ws lengths mismatch".to_owned())); };
        let mut g = self.acentroid(); // start iterating from the Centre 
        let mut recsum = 0f64;
        loop { // vector iteration till accuracy eps is exceeded  
            let mut nextg = vec![0_f64; self[0].len()];   
            let mut nextrecsum = 0_f64;
            for (x,w) in self.iter().zip(ws) {   
                // |x-g| done in-place for speed. Could have simply called x.vdist(g)
                //let mag:f64 = g.vdist::<f64>(&x); 
                let mag = g.iter().zip(x).map(|(&gi,xi)|(xi.clone().into()-gi).powi(2)).sum::<f64>(); 
                if mag.is_normal() { 
                    let rec = w.clone().into()/(mag.sqrt()); // reciprocal of distance (scalar)
                    // vsum increments by components
                    nextg.iter_mut().zip(x).for_each(|(vi,xi)| *vi += xi.clone().into()*rec); 
                    nextrecsum += rec // add separately the reciprocals for final scaling   
                } // else simply ignore this point should its distance from g be zero
            }
            nextg.iter_mut().for_each(|gi| *gi /= nextrecsum);       
            // eprintln!("recsum {}, nextrecsum {} diff {}",recsum,nextrecsum,nextrecsum-recsum);
            if nextrecsum-recsum < eps { return Ok(nextg); };  // termination test
            g = nextg;
            recsum = nextrecsum;            
        }
    }

    /// Parallel (multithreaded) implementation of the weighted Geometric Median.
    /// Possibly the fastest you will find.  
    /// Geometric Median (gm) is the point that minimises the sum of distances to a given set of points.  
    /// It has (provably) only vector iterative solutions.    
    /// Search methods are slow and difficult in hyper space.    
    /// Weiszfeld's fixed point iteration formula has known problems and sometimes fails to converge.  
    /// Specifically, when the points are dense in the close proximity of the gm, or gm coincides with one of them.    
    /// However, these problems are solved in my new algorithm here.     
    /// The sum of reciprocals is strictly increasing and so is used to easily evaluate the termination condition.  
    fn par_wgmedian(self, ws: &[U], eps: f64) -> Result<Vec<f64>,RE> { 
        if self.len() != ws.len() { 
            return Err(RError::DataError("wgmedian and ws lengths mismatch".to_owned())); };
        let mut g = self.acentroid(); // start iterating from the mean  or vec![0_f64; self[0].len()];
        let mut recsum = 0_f64;
        loop {
            // vector iteration till accuracy eps is exceeded
            let (mut nextg, nextrecsum) = self
                .par_iter().zip(ws)
                .fold(
                    || (vec![0_f64; self[0].len()], 0_f64),
                    |mut pair: (Vec<f64>, f64), (p, w)| {
                        // |p-g| done in-place for speed. Could have simply called p.vdist(g)
                        let mag: f64 = p
                            .iter()
                            .zip(&g)
                            .map(|(vi, gi)| (vi.clone().into() - gi).powi(2))
                            .sum();
                        // let (mut vecsum, mut recsum) = pair;
                        if mag > eps {
                            let rec = w.clone().into() / (mag.sqrt()); // reciprocal of distance (scalar)
                            for (vi, gi) in p.iter().zip(&mut pair.0) {
                                *gi += vi.clone().into() * rec
                            }
                            pair.1 += rec; // add separately the reciprocals for the final scaling
                        } // else simply ignore this point should its distance from g be zero
                        pair
                    }
                )
                // must run reduce on the partial sums produced by fold
                .reduce(
                    || (vec![0_f64; self[0].len()], 0_f64),
                    |mut pairsum: (Vec<f64>, f64), pairin: (Vec<f64>, f64)| {
                        pairsum.0.mutvadd::<f64>(&pairin.0);
                        pairsum.1 += pairin.1;
                        pairsum
                    }
                );
            nextg.iter_mut().for_each(|gi| *gi /= nextrecsum);
            if nextrecsum - recsum < eps {
                return Ok(nextg);
            }; // termination test
            g = nextg;
            recsum = nextrecsum;
        }
    }
    
    /// Like `gmedian` but returns also the sum of unit vecs and the sum of reciprocals. 
    fn wgmparts(self, ws:&[U], eps: f64) -> Result<(Vec<f64>,Vec<f64>,f64),RE> { 
        if self.len() != ws.len() { 
            return Err(RError::DataError("wgmparts and ws lengths mismatch".to_owned())); };
        let mut g = self.acentroid(); // start iterating from the Centre
        let mut recsum = 0f64; 
        loop { // vector iteration till accuracy eps is exceeded  
            let mut nextg = vec![0_f64; self[0].len()];   
            let mut nextrecsum = 0f64;
            for (x,w) in self.iter().zip(ws) { // for all points
                // |x-g| done in-place for speed. Could have simply called x.vdist(g)
                //let mag:f64 = g.vdist::<f64>(&x); 
                let mag = g.iter().zip(x).map(|(&gi,xi)|(xi.clone().into()-gi).powi(2)).sum::<f64>(); 
                if mag.is_normal() { 
                    let rec = w.clone().into()/(mag.sqrt()); // reciprocal of distance (scalar)
                    // vsum increments by components
                    nextg.iter_mut().zip(x).for_each(|(vi,xi)| *vi += xi.clone().into()*rec); 
                    nextrecsum += rec // add separately the reciprocals for final scaling   
                } // else simply ignore this point should its distance from g be zero
            }
            if nextrecsum-recsum < eps { 
                return Ok((
                    nextg.iter().map(|&gi| gi/nextrecsum).collect::<Vec<f64>>(),
                    nextg,
                    nextrecsum
                )); }; // termination        
            nextg.iter_mut().for_each(|gi| *gi /= nextrecsum);
            g = nextg;
            recsum = nextrecsum;            
        }
    }

    /// Symmetric covariance matrix. Becomes comediance when argument `mid`  
    /// is the geometric median instead of the centroid.
    /// The indexing is always in this order: (row,column) (left to right, top to bottom).
    /// The items are flattened into a single vector in this order.
    fn covar(self, mid:&[U]) -> Result<TriangMat,RE> {
        let d = self[0].len(); // dimension of the vector(s)
        if d != mid.len() { 
            return Err(RError::DataError("covar self and mid dimensions mismatch".to_owned())); }; 
        let mut covsum = self
            .par_iter()
            .fold(
                || vec![0_f64; (d+1)*d/2],
                | mut cov: Vec<f64>, p | {
                let mut covsub = 0_usize; // subscript into the flattened array cov
                let vm = p.vsub(mid);  // zero mean vector
                vm.iter().enumerate().for_each(|(i,thisc)| 
                    // its products up to and including the diagonal (itself)
                    vm.iter().take(i+1).for_each(|vmi| { 
                        cov[covsub] += thisc*vmi;
                        covsub += 1;
                        })); 
                cov 
                }
            )
            .reduce(
                || vec![0_f64; (d+1)*d/2],
                | mut covout: Vec<f64>, covin: Vec<f64> | {
                covout.mutvadd(&covin);
                covout
                }
            ); 
        // now compute the means and return
        let lf = self.len() as f64;
        covsum.iter_mut().for_each(|c| *c /= lf); 
        Ok(TriangMat{ kind:2,data:covsum }) // symmetric, non transposed
    }
 
    /// Weighted covariance matrix for f64 vectors in self. Becomes comediance when 
    /// argument m is the geometric median instead of the centroid.
    /// Since the matrix is symmetric, the missing upper triangular part can be trivially
    /// regenerated for all j>i by: c(j,i) = c(i,j).
    /// The indexing is always in this order: (row,column) (left to right, top to bottom).
    /// The items are flattened into a single vector in this order.
    /// The full 2D matrix can be reconstructed by `symmatrix` in the trait `Stats`.
    fn wcovar(self, ws:&[U], m:&[f64]) -> Result<TriangMat,RE> {
        let n = self[0].len(); // dimension of the vector(s)
        if n != m.len() { 
            return Err(RError::DataError("wcovar self and m dimensions mismatch".to_owned())); }; 
        if self.len() != ws.len() { 
            return Err(RError::DataError("wcovar self and ws lengths mismatch".to_owned())); }; 
        let (mut covsum,wsum) = self
            .par_iter().zip(ws)
            .fold(
                || (vec![0_f64; (n+1)*n/2], 0_f64),
                | mut pair: (Vec<f64>, f64), (p,w) | {
                let mut covsub = 0_usize; // subscript into the flattened array cov
                let vm = p.vsub(m);  // zero mean vector
                let wf = w.clone().into(); // f64 weight for this point
                vm.iter().enumerate().for_each(|(i,thisc)| 
                    // its products up to and including the diagonal (itself)
                    vm.iter().take(i+1).for_each(|vmi| { 
                        pair.0[covsub] += wf*thisc*vmi;
                        covsub += 1;
                        }));
                pair.1 += wf; 
                pair 
                }
            )
            .reduce(
                || (vec![0_f64; (n+1)*n/2], 0_f64),
                | mut pairout: (Vec<f64>,f64), pairin: (Vec<f64>,f64) | {
                pairout.0.mutvadd(&pairin.0);
                pairout.1 += pairin.1;
                pairout 
                }
            ); 
        // now compute the means and return  
        covsum.iter_mut().for_each(|c| *c /= wsum); 
        Ok(TriangMat{ kind:2,data:covsum }) // symmetric, non transposed
        }
}