1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
use std::iter::FromIterator;

use crate::{sumn, MStats, MinMax, MutVecg, RError, Stats, TriangMat, VecVec, Vecg, RE};
use indxvec::{Vecops};
use medians::{MedError, Median, Medianf64};
use rayon::prelude::*;

impl<T> VecVec<T> for &[Vec<T>]
where
    T: Copy + PartialOrd + std::fmt::Display + Sync,
    Vec<Vec<T>>: IntoParallelIterator,
    Vec<T>: IntoParallelIterator,
    f64: From<T>
{
    /// Selects a column by number
    fn column(self, cnum: usize) -> Vec<f64> {
        self.iter().map(|row| f64::from(row[cnum])).collect()
    }

    /// Transpose vec of vecs matrix
    fn transpose(self) -> Vec<Vec<f64>> {
        (0..self[0].len()).map(|cnum| self.column(cnum)).collect()
    }

    /// Normalize columns, so that they become unit row vectors
    fn normalize(self) -> Vec<Vec<f64>> {
        (0..self[0].len())
            .into_par_iter()
            .map(|cnum| self.column(cnum).vunit())
            .collect()
    }

    /// Householder's method returning triangular matrices (U',R), where
    /// U are the reflector generators for use by house_uapply(m).
    /// R is the upper triangular decomposition factor.
    /// Here both U and R are returned for convenience in their transposed lower triangular forms.
    /// Transposed input self for convenience, so that original columns get accessed easily as rows.
    fn house_ur(self) -> (TriangMat, TriangMat) {
        let n = self.len();
        let d = self[0].len();
        let min = if d <= n { d } else { n }; // minimal dimension
        let mut r = self.transpose(); // self.iter().map(|s| s.tof64()).collect::<Vec<Vec<f64>>>(); //  // 
        let mut ures = vec![0.; sumn(min)];
        let mut rres = Vec::with_capacity(sumn(min));
        for j in 0..min {
            let uvec = r[j].get(j..d).unwrap().house_reflector(); // reflector
            for rlast in r.iter_mut().take(d).skip(j) {
                let rvec = uvec.house_reflect::<f64>(&rlast.drain(j..d).collect::<Vec<f64>>());
                rlast.extend(rvec);
                // drained, reflected with this uvec, and rebuilt, all remaining rows of r
            }
            // these uvecs are columns, so they must saved column-wise
            for (row, &usave) in uvec.iter().enumerate() {
                ures[sumn(row + j) + j] = usave; // using triangular index
            }
            // save completed `r[j]` components only up to and including the diagonal
            // we are not even storing the rest, so no need to set those to zero
            for &rsave in r[j].iter().take(j + 1) {
                rres.push(rsave)
            }
        }
        (
            TriangMat { kind:3, data: ures }, // transposed, non symmetric kind
            TriangMat { kind:3, data: rres }, // transposed, non symmetric kind
        )   
    }

    /// Joint probability density function of n matched slices of the same length
    fn jointpdfn(self) -> Result<Vec<f64>, RE> {
        let d = self[0].len(); // their common dimensionality (length)
        for v in self.iter().skip(1) {
            if v.len() != d {
                return Err(RError::DataError(
                    "jointpdfn: all vectors must be of equal length!".to_owned(),
                ));
            };
        }
        let mut res: Vec<f64> = Vec::with_capacity(d);
        let mut tuples = self.transpose();
        let df = tuples.len() as f64; // for turning counts to probabilities
                                      // lexical sort to group together occurrences of identical tuples
        tuples.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
        let mut count = 1_usize; // running count
        let mut lastindex = 0; // initial index of the last unique tuple
        tuples.iter().enumerate().skip(1).for_each(|(i, ti)| {
            if ti > &tuples[lastindex] {
                // new tuple ti (Vec<T>) encountered
                res.push((count as f64) / df); // save frequency count as probability
                lastindex = i; // current index becomes the new one
                count = 1_usize; // reset counter
            } else {
                count += 1;
            }
        });
        res.push((count as f64) / df); // flush the rest!
        Ok(res)
    }

    /// Joint entropy of vectors of the same length
    fn jointentropyn(self) -> Result<f64, RE> {
        let jpdf = self.jointpdfn()?;
        Ok(jpdf.iter().map(|&x| -x * (x.ln())).sum())
    }

    /// Dependence (component wise) of a set of vectors.
    /// i.e. `dependencen` returns 0 iff they are statistically independent
    /// bigger values when they are dependentent
    fn dependencen(self) -> Result<f64, RE> {
        Ok((0..self.len())
            .into_par_iter()
            .map(|i| self[i].entropy())
            .sum::<f64>()
            / self.jointentropyn()?
            - 1.0)
    }

    /// Flattened lower triangular part of a symmetric matrix for vectors in self.
    /// The upper triangular part can be trivially generated for all j>i by: c(j,i) = c(i,j).
    /// Applies closure f to compute a scalar binary relation between all pairs of vector 
    /// components of self.   
    /// The closure typically invokes one of the methods from Vecg trait (in vecg.rs),
    /// such as dependencies or correlations.  
    /// Example call: `pts.transpose().crossfeatures(|v1,v2| v1.mediancorrf64(v2)?)?`
    /// computes median correlations between all column vectors (features) in pts.
    fn crossfeatures(self, f: fn(&[T], &[T]) -> f64) -> Result<TriangMat, RE> {
        Ok(TriangMat {
            kind:2, // symmetric, non transposed
            data: (0..self.len())
                .into_par_iter()
                .flat_map(|i| {
                    (0..i + 1usize)
                        .into_iter()
                        .map(|j| f(&self[i], &self[j]))
                        .collect::<Vec<f64>>()
                })
                .collect::<Vec<f64>>(),
        })
    }

    /// Sum of nd points (or vectors)
    fn sumv(self) -> Vec<f64> {
        let mut resvec = vec![0_f64; self[0].len()];
        for v in self {
            resvec.mutvadd(v)
        }
        resvec
    }

    /// acentroid = multidimensional arithmetic mean
    fn acentroid(self) -> Vec<f64> {
        let mut centre = vec![0_f64; self[0].len()];
        for v in self {
            centre.mutvadd(v)
        }
        centre.mutsmult::<f64>(1.0 / (self.len() as f64));
        centre
    }

    /// gcentroid = multidimensional geometric mean
    fn gcentroid(self) -> Vec<f64> {
        let nf = self.len() as f64; // number of points
        let dim = self[0].len(); // dimensions
        let mut result = vec![0_f64; dim];
        for d in 0..dim {
            for v in self {
                result[d] += f64::from(v[d]).ln();
            }
            result[d] /= nf;
            result[d] = result[d].exp()
        }
        result
    }

    /// hcentroid =  multidimensional harmonic mean
    fn hcentroid(self) -> Vec<f64> {
        let mut centre = vec![0_f64; self[0].len()];
        for v in self {
            centre.mutvadd::<f64>(&v.vinverse().unwrap())
        }
        centre
            .smult::<f64>(1.0 / (self.len() as f64))
            .vinverse()
            .unwrap()
    }

    /// For each member point, gives its sum of distances to all other points and their MinMax
    fn distsums(self) -> Vec<f64> {
        let n = self.len();
        let mut dists = vec![0_f64; n]; // distances accumulator for all points
                                        // examine all unique pairings (lower triangular part of symmetric flat matrix)
        self.iter().enumerate().for_each(|(i, thisp)| {
            self.iter().take(i).enumerate().for_each(|(j, thatp)| {
                let d = thisp.vdist(thatp); // calculate each distance relation just once
                dists[i] += d;
                dists[j] += d; // but add it to both points' sums
            })
        });
        dists
    }

    /// The sum of distances from one member point, given by its `indx`,
    /// to all the other points in self.
    /// For all the points, use more efficient `distsums`.
    /// For measure of 'outlyingness', use nore efficient radius from gm.    
    fn distsuminset(self, indx: usize) -> f64 {
        let thisp = &self[indx];
        self.par_iter()
            .enumerate()
            .map(|(i, thatp)| if i == indx { 0.0 } else { thisp.vdist(thatp) })
            .sum()
    }

    /// Medoid and Outlier (Medout)
    /// Medoid is the member point (point belonging to the set of points `self`),
    /// which has the least sum of distances to all other points.
    /// Outlier is the point with the greatest sum of distances.
    /// In other words, they are the members nearest and furthest from the geometric median.
    /// Returns struct MinMax{min,minindex,max,maxindex}
    fn medout(self, gm: &[f64]) -> MinMax<f64> {
        self.par_iter()
            .map(|s| s.vdist::<f64>(gm))
            .collect::<Vec<f64>>()
            .minmax()
    }

    /// Finds approximate vectors from each member point towards the geometric median.
    /// Twice as fast using symmetry, as doing them individually.
    /// For measure of 'outlyingness' use `exacteccs` below
    fn eccentricities(self) -> Vec<Vec<f64>> {
        let n = self.len();
        // allocate vectors for the results
        let mut eccs = vec![vec![0_f64; self[0].len()]; n];
        let mut recips = vec![0_f64; n];
        // ecentricities vectors accumulator for all points
        // examine all unique pairings (lower triangular part of symmetric flat matrix)
        for i in 1..n {
            let thisp = &self[i];
            for j in 0..i {
                // calculate each unit vector between any pair of points just once
                let dvmag = self[j].vdist(thisp);
                if !dvmag.is_normal() {
                    continue;
                }
                let rec = 1.0_f64 / dvmag;
                eccs[i].mutvadd::<f64>(&self[j].smult::<f64>(rec));
                recips[i] += rec;
                // mind the vector's opposite orientations w.r.t. to the two points!
                eccs[j].mutvsub::<f64>(&self[j].smult::<f64>(rec));
                recips[j] += rec; // but scalar distances are the same
            }
        }
        for i in 0..n {
            eccs[i].mutsmult::<f64>(1.0 / recips[i]);
            eccs[i].mutvsub(&self[i])
        }
        eccs
    }

    /// Radius of a point specified by its subscript.    
    fn radius(self, i: usize, gm: &[f64]) -> Result<f64, RE> {
        if i > self.len() {
            return Err(RError::DataError("radius: invalid subscript".to_owned()));
        }
        Ok(self[i].vdist::<f64>(gm))
    }

    /// Exact radii (eccentricity) magnitudes for all member points from the Geometric Median.
    /// More accurate and usually faster as well than the approximate `eccentricities` above,
    /// especially when there are many points.
    fn radii(self, gm: &[f64]) -> Vec<f64> {
        self.iter()
            .map(|s: &Vec<T>| gm.vdist(s))
            .collect::<Vec<f64>>()
    }

    /// Arith mean and std (in MStats struct), Median info (in Med struct), Medoid and Outlier (in MinMax struct)
    /// of scalar radii (eccentricities) of points in self.
    /// These are new robust measures of a cloud of multidimensional points (or multivariate sample).  
    fn eccinfo(self, gm: &[f64]) -> Result<(MStats, MStats, MinMax<f64>), RE>
    where
        Vec<f64>: FromIterator<f64> {
        let rads: Vec<f64> = self.radii(gm);
        Ok((
            rads.ameanstd()?,
            rads.medstatsf64()?,
            rads.minmax(),
        ))
    }

    /// Quasi median, recommended only for comparison purposes
    /// Here only default f64::from() is supplied for conversion T -> f64
    fn quasimedian(self) -> Result<Vec<f64>, RE> {
        Ok((0..self[0].len())
            .into_iter()
            .map(|colnum| self.column(colnum).medianf64())
            .collect::<Result<Vec<f64>, MedError<String>>>()?)
    }

    /// Geometric median's estimated error
    fn gmerror(self, g: &[f64]) -> f64 {
        let (gm, _, _) = self.nxnonmember(g);
        gm.vdist::<f64>(g)
    }

    /// Proportions of points along each +/-axis (hemisphere)
    /// Excludes points that are perpendicular to axis
    /// Uses only the selected points specified in idx (e.g. the hull).
    /// Self should normally be zero mean/median vectors,
    /// e.g. `self.translate(&median)`
    fn tukeyvec(self, idx: &[usize]) -> Result<Vec<f64>, RE> {
        let dims = self[0].len();
        if self.is_empty() {
            return Err(RError::NoDataError("tukeyvec given no data".to_owned()));
        };
        let mut hemis = vec![0_f64; 2 * dims];
        for &i in idx {
            for (j, &component) in self[i].iter().enumerate() {
                let cf = f64::from(component);
                if cf > 0. {
                    hemis[j] += 1.
                } else if cf < 0. {
                    hemis[dims + j] += 1.
                };
            }
        }
        hemis
            .iter_mut()
            .for_each(|count| *count /= idx.len() as f64);
        Ok(hemis)
    }

    /// MADGM median of absolute deviations from gm: stable nd data spread estimator
    fn madgm(self, gm: &[f64]) -> Result<f64, RE> {
        let diffs: Vec<f64> = self.iter().map(|v| v.vdist::<f64>(gm)).collect();
        Ok(diffs.median(&mut |f: &f64| *f)?)
    }

    /// Collects indices of inner (or core) hull and outer hull, from zero median points in self.    
    /// Vector b is not in outer hull, when there is any other point behind the plane
    /// through 'b' and perpendicular to it (its defining plane).
    /// 'b' is not in the inner hull, when it lies behind the defining plane of any other point.
    /// The testing is done against the existing hull points, in decreasing (increasing)
    /// radius order. When projection of 'a' onto line from gm to 'b' exceeds |b|, then 'a' lies outside
    /// the defining plane of 'b': `|a|cos(θ) > |b| => a*b > |b|^2`
    /// Thus working with square magnitudes (`|b|^2`) saves taking square roots and dividing the dot product by |b|.
    fn hulls(self) -> (Vec<usize>, Vec<usize>) {
        let sqradii = self.iter().map(|s| s.vmagsq()).collect::<Vec<f64>>();
        let radindex = sqradii.hashsort_indexed(&mut |x| *x); // ascending square radii
        let mut innerindex: Vec<usize> = Vec::new();
        'candidate: for &b in &radindex {
            // test all points in ascending order
            for &a in &radindex {
                // check against all points 'a' up to 'b'
                if a == b {
                    break;
                } // b can only be outside of a if a's magnitude is less
                let dotp = self[a].dotp(&self[b]);
                if dotp > sqradii[a] {
                    // b is outside of a
                    continue 'candidate;
                };
            }
            innerindex.push(b); // passed
        }
        // radindex.mutrevs(); // make them descending
        let mut outerindex: Vec<usize> = Vec::new();
        'outer: for &b in radindex.iter().rev() {
            // test all points, in descending order
            for &a in radindex.iter().rev() {
                if a == b {
                    break;
                } // a can only be outside of b for a's of greater magnitude
                let dotp = self[a].dotp(&self[b]);
                if dotp > sqradii[b] {
                    // a is outside of b
                    continue 'outer;
                };
            }
            outerindex.push(b); // passed
        }
        outerindex.reverse();
        (innerindex, outerindex)
    }

    /// Initial (first) point for geometric medians.
    fn firstpoint(self) -> Vec<f64> {
        let mut rsum = 0_f64;
        let mut vsum = vec![0_f64; self[0].len()];
        for p in self {
            let mag = p.iter().map(|&pi| f64::from(pi).powi(2)).sum::<f64>(); // vmag();
            if mag.is_normal() {
                // skip if p is at the origin
                let rec = 1.0_f64 / (mag.sqrt());
                // the sum of reciprocals of magnitudes for the final scaling
                rsum += rec;
                // add this unit vector to their sum
                vsum.mutvadd::<f64>(&p.smult::<f64>(rec))
            }
        }
        vsum.mutsmult::<f64>(1.0 / rsum); // scale by the sum of reciprocals
        vsum // good initial gm
    }

    /// Next approximate gm computed from a member point  
    /// specified by its index `indx` to self.
    fn nxmember(self, indx: usize) -> Vec<f64> {
        let mut vsum = vec![0_f64; self[0].len()];
        let p = &self[indx].tof64();
        let mut recip = 0_f64;
        for (i, x) in self.iter().enumerate() {
            if i != indx {
                // not point p
                let mag: f64 = x
                    .iter()
                    .zip(p)
                    .map(|(&xi, &pi)| (f64::from(xi) - pi).powi(2))
                    .sum::<f64>();
                if mag.is_normal() {
                    // ignore this point should distance be zero
                    let rec = 1.0_f64 / (mag.sqrt());
                    vsum.iter_mut()
                        .zip(x)
                        .for_each(|(vi, xi)| *vi += rec * f64::from(*xi));
                    recip += rec // add separately the reciprocals
                }
            }
        }
        vsum.iter_mut().for_each(|vi| *vi /= recip);
        vsum
    }

    /// Like gmparts, except only does one iteration from any non-member point g
    fn nxnonmember(self, g: &[f64]) -> (Vec<f64>, Vec<f64>, f64) {
        // vsum is the sum vector of unit vectors towards the points
        let mut vsum = vec![0_f64; self[0].len()];
        let mut recip = 0_f64;
        for x in self {
            // |x-p| done in-place for speed. Could have simply called x.vdist(p)
            let mag: f64 = x
                .iter()
                .zip(g)
                .map(|(&xi, &gi)| (f64::from(xi) - gi).powi(2))
                .sum::<f64>();
            if mag.is_normal() {
                // ignore this point should distance be zero
                let rec = 1.0_f64 / (mag.sqrt()); // reciprocal of distance (scalar)
                                                  // vsum increments by components
                vsum.iter_mut()
                    .zip(x)
                    .for_each(|(vi, xi)| *vi += f64::from(*xi) * rec);
                recip += rec // add separately the reciprocals for final scaling
            }
        }
        (
            vsum.iter().map(|vi| vi / recip).collect::<Vec<f64>>(),
            vsum,
            recip,
        )
    }

    /// Geometric Median (gm) is the point that minimises the sum of distances to a given set of points.
    /// It has (provably) only vector iterative solutions.
    /// Search methods are slow and difficult in highly dimensional space.
    /// Weiszfeld's fixed point iteration formula has known problems with sometimes failing to converge.
    /// Especially, when the points are dense in the close proximity of the gm, or gm coincides with one of them.  
    /// However, these problems are fixed in my new algorithm here.      
    /// There will eventually be a multithreaded version.
    /// The sum of reciprocals is strictly increasing and so is used here as
    /// easy to evaluate termination condition.
    fn gmedian(self, eps: f64) -> Vec<f64> {
        let mut g = self.acentroid(); // start iterating from the mean  or vec![0_f64; self[0].len()];
        let mut recsum = 0f64;
        loop {
            // vector iteration till accuracy eps is exceeded
            let mut nextg = vec![0_f64; self[0].len()];
            let mut nextrecsum = 0_f64;
            for v in self {
                // |v-g| done in-place for speed. Could have simply called x.vdist(g)
                let mag: f64 = v
                    .iter()
                    .zip(&g)
                    .map(|(&vi, gi)| (f64::from(vi) - gi).powi(2))
                    .sum();
                if mag > eps {
                    let rec = 1.0_f64 / (mag.sqrt()); // reciprocal of distance (scalar)
                                                      // vsum increment by components
                    for (vi, gi) in v.iter().zip(&mut nextg) {
                        *gi += f64::from(*vi) * rec
                    }
                    nextrecsum += rec // add separately the reciprocals for final scaling
                } // else simply ignore this point should its distance from g be zero
            }
            nextg.iter_mut().for_each(|gi| *gi /= nextrecsum);
            // eprintln!("recsum {}, nextrecsum {} diff {}",recsum,nextrecsum,nextrecsum-recsum);
            if nextrecsum - recsum < eps {
                return nextg;
            }; // termination test
            g = nextg;
            recsum = nextrecsum;
        }
    }

    /// Point by point Geometric Median (gm).
    /// Gm is the point that minimises the sum of distances to a given set of points.
    /// It has (provably) only vector iterative solutions.
    /// Search methods are slow and difficult in highly dimensional space.
    /// Weiszfeld's fixed point iteration formula has known problems with sometimes failing to converge.
    /// Especially, when the points are dense in the close proximity of the gm, or gm coincides with one of them.  
    /// However, these problems are fixed in my new algorithm here.      
    /// There will eventually be a multithreaded version.
    /// The sum of reciprocals is strictly increasing and so is used here as
    /// easy to evaluate termination condition.
    fn pmedian(self, eps: f64) -> Vec<f64> {
        // start iterating from the centroid, alternatively from the origin: vec![0_f64; self[0].len()]
        let mut g = self.acentroid();
        // running global sum of reciprocals
        let mut recsum = 0f64;
        // running global sum of unit vectors
        let mut vsum = vec![0_f64; self[0].len()];
        // previous reciprocals for each point
        let mut precs: Vec<f64> = Vec::with_capacity(self.len());
        // termination flag triggered by any one point
        let mut terminate = true;

        // initial vsum,recsum and precs
        for p in self {
            let magsq: f64 = p
                .iter()
                .zip(&g)
                .map(|(&pi, gi)| (f64::from(pi) - gi).powi(2))
                .sum();
            if magsq < eps {
                precs.push(0.);
                continue;
            }; // skip this point, it is too close
            let rec = 1.0 / (magsq.sqrt());
            // vsum incremented by components of unit vector
            for (vscomp, &pcomp) in vsum.iter_mut().zip(p) {
                *vscomp += rec * f64::from(pcomp)
            }
            // vsum.mutvadd::<f64>(&p.smult::<f64>(rec)); // the above, shorter but slower
            precs.push(rec); // store rec for this p
            recsum += rec;
        }
        // first iteration done, update g
        for (gcomp, vscomp) in g.iter_mut().zip(&vsum) {
            *gcomp = vscomp / recsum
        }
        g = vsum.smult::<f64>(1.0 / recsum);
        loop {
            // vector iteration till accuracy eps is exceeded
            for (p, rec) in self.iter().zip(&mut precs) {
                let magsq: f64 = p
                    .iter()
                    .zip(&g)
                    .map(|(&pi, gi)| (f64::from(pi) - gi).powi(2))
                    .sum();
                if magsq < eps {
                    *rec = 0.0;
                    continue;
                }; // skip this point, it is too close
                let recip = 1.0 / (magsq.sqrt());
                let recdelta = recip - *rec; // change in reciprocal for p
                *rec = recip; // update rec for this p for next time
                              // vsum updated by components
                for (vscomp, pcomp) in vsum.iter_mut().zip(p) {
                    *vscomp += recdelta * f64::from(*pcomp)
                }
                // update recsum
                recsum += recdelta;
                // update g immediately for each point p
                for (gcomp, vscomp) in g.iter_mut().zip(&vsum) {
                    *gcomp = vscomp / recsum
                }
                // termination condition detected but do the rest of the points anyway
                if terminate && recdelta.abs() > eps {
                    terminate = false
                };
            }
            if terminate {
                return g;
            }; // termination reached
            terminate = true
        }
    }

    /// Like `gmedian` but returns also the sum of unit vecs and the sum of reciprocals.
    fn gmparts(self, eps: f64) -> (Vec<f64>, Vec<f64>, f64) {
        let mut g = self.acentroid(); // start iterating from the Centre
        let mut recsum = 0f64;
        loop {
            // vector iteration till accuracy eps is exceeded
            let mut nextg = vec![0_f64; self[0].len()];
            let mut nextrecsum = 0f64;
            for x in self {
                // for all points
                // |x-g| done in-place for speed. Could have simply called x.vdist(g)
                //let mag:f64 = g.vdist::<f64>(&x);
                let mag = g
                    .iter()
                    .zip(x)
                    .map(|(&gi, &xi)| (f64::from(xi) - gi).powi(2))
                    .sum::<f64>();
                if mag.is_normal() {
                    let rec = 1.0_f64 / (mag.sqrt()); // reciprocal of distance (scalar)
                                                      // vsum increments by components
                    nextg
                        .iter_mut()
                        .zip(x)
                        .for_each(|(vi, &xi)| *vi += f64::from(xi) * rec);
                    nextrecsum += rec // add separately the reciprocals for final scaling
                } // else simply ignore this point should its distance from g be zero
            }
            if nextrecsum - recsum < eps {
                return (
                    nextg
                        .iter()
                        .map(|&gi| gi / nextrecsum)
                        .collect::<Vec<f64>>(),
                    nextg,
                    nextrecsum,
                );
            }; // termination
            nextg.iter_mut().for_each(|gi| *gi /= nextrecsum);
            g = nextg;
            recsum = nextrecsum;
        }
    }
}