1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
use std::iter::FromIterator;

use crate::{Med, MStats, MinMax, MutVecg, MutVecf64, Stats, VecVec, Vecg};
pub use indxvec::{merge::*,Indices};

impl<T> VecVec<T> for &[Vec<T>] where T: Copy+PartialOrd, 
    f64: From<T> {

    /// acentroid = simple multidimensional arithmetic mean
    /// # Example
    /// ```
    /// use rstats::{Vecg,VecVec,VecVecg,functions::genvec};
    /// let pts = genvec(15,15,255,30); 
    /// let dist = pts.distsum(&pts.acentroid());
    /// assert_eq!(dist, 4.14556218326653_f64);
    /// ```
    fn acentroid(self) -> Vec<f64> {
        let mut centre = vec![0_f64; self[0].len()];
        for v in self { centre.mvadd(&v) }
        centre.mutsmult(1.0 / self.len() as f64);
        centre
    }
        /// gcentroid = multidimensional geometric mean
    /// # Example
    /// ```
    /// use rstats::{Vecg,VecVec,VecVecg,functions::genvec};
    /// let pts = genvec(15,15,255,30);
    /// let centre = pts.gcentroid();
    /// let dist = pts.distsum(&centre);
    /// assert_eq!(dist,4.897594485332543_f64);
    /// ```
    fn gcentroid(self) -> Vec<f64> {
        let n = self.len() as f64; // number of points
        let d = self[0].len(); // dimensions
        let mut centre = vec![0_f64; d];
        let mut lnvec = vec![0_f64; d];
        for v in self { 
            for i in 0..d { lnvec[i] = f64::from(v[i]).ln() }
            centre.mutvadd(&lnvec)
        }
        centre.iter().map(|comp| (comp/n).exp()).collect()        
    }

    /// hcentroid =  multidimensional harmonic mean
    /// # Example
    /// ```
    /// use rstats::{Vecg,VecVec,VecVecg,functions::genvec};
    /// let pts = genvec(15,15,255,30);
    /// let centre = pts.hcentroid();
    /// let dist = pts.distsum(&centre);
    /// assert_eq!(dist, 5.623778191797538_f64);
    /// ```
    fn hcentroid(self) -> Vec<f64> {
        let mut centre = vec![0_f64; self[0].len()];
        // let t = self.translate(&self.acentroid());
        for v in self {
            centre.mutvadd(&v.vinverse())
        }
        centre.vinverse()       
    }
    /// Possible first iteration point for geometric medians.
    /// Same as eccnonmember(origin), just saving the zero subtractions. 
    /// # Example
    /// ```
    /// use rstats::{Vecg,VecVec,VecVecg,functions::genvec};
    /// let pts = genvec(15,15,255,30); 
    /// let dist = pts.distsum(&pts.firstpoint());
    /// assert_eq!(dist,4.132376831171272_f64);
    /// ```
    fn firstpoint(self) -> Vec<f64> {
        let mut rsum = 0_f64;
        let mut vsum = vec![0_f64; self[0].len()];
        for thisp in self {
            let mag = thisp.vmag();
            if mag.is_normal() {  
                let invmag = 1.0_f64/mag;
                rsum += invmag;
                vsum.mutvadd(&thisp.smultf64(invmag)) // accumulate unit vectors
            }
        }
        vsum.smultf64(1.0/rsum) // scale by the sum of reciprocals
    }

    /// For each member point, gives its sum of distances to all other points and their MinMax
    fn distsums(self) -> Vec<f64> {
        let n = self.len();
        let mut dists = vec![0_f64; n]; // distances accumulator for all points
                                        // examine all unique pairings (lower triangular part of symmetric flat matrix)
        for i in 1..n {
            let thisp = &self[i];
            for j in 0..i {
                let thatp = &self[j];
                let d = thisp.vdist(&thatp); // calculate each distance relation just once
                dists[i] += d;
                dists[j] += d; // but add it to both points
            }
        }     
        dists
    } 

    /// The sum of distances from one member point, given by its `indx`, to all the other points in self.
    /// For all the points, use more efficient `distsums`.    
    fn distsuminset(self, indx: usize) -> f64 {
        let n = self.len();
        let mut sum = 0_f64;
        let thisp = &self[indx];
        for i in 0..n {
            if i == indx {
                continue;
            };
            sum += self[i].vdist(&thisp)
        }
        sum
    } 

    /// Medoid is the member point (point belonging to the set of points `self`), 
    /// which has the least sum of distances to all other points.
    /// Outlier is the point with the greatest sum of distances.
    /// In other words, they are the members nearest and furthest from the geometric median. 
    /// Returns struct MinMax{min,minindex,max,maxindex}
    /// # Example
    /// ```
    /// use rstats::{Vecg,VecVec,VecVecg,functions::genvec};
    /// let pts = genvec(15,15,255,30);
    /// let mm = pts.medout();
    /// assert_eq!(mm.min,4.812334638782327_f64);
    /// ```
    fn medout(self) -> MinMax<f64> {  
        minmax(&self.distsums())
    }

    /// Finds approximate vectors from each member point towards the geometric median.
    /// Twice as fast as doing them individually, using symmetry.
    fn eccentricities(self) -> Vec<Vec<f64>> {
        let n = self.len();
        // allocate vectors for the results
        let mut eccs = vec![vec![0_f64; self[0].len()]; n];
        let mut recips = vec![0_f64; n];
        // ecentricities vectors accumulator for all points
        // examine all unique pairings (lower triangular part of symmetric flat matrix)
        for i in 1..n {
            let thisp = &self[i];
            for j in 0..i { 
                // calculate each unit vector between any pair of points just once
                let dvmag = self[j].vdist(&thisp);             
                if !dvmag.is_normal() { continue }
                let rec = 1.0/dvmag;
                eccs[i].mutvadd(&self[j].smultf64(rec));
                recips[i] += rec;
                // mind the vector's opposite orientations w.r.t. to the two points!
                eccs[j].mutvsub(&self[j].smultf64(rec)); 
                recips[j] += rec;
            }
        }
        for i in 0..n { 
            eccs[i].mutsmult(1.0/recips[i]); 
            eccs[i].mvsub(&self[i]) 
        }
        eccs
    }

    /// Exact eccentricity vectors from all member points by first finding the Geometric Median.
    /// Usually faster than the approximate `eccentricities` above, especially when there are many points.
    fn exacteccs(self, eps:f64) -> Vec<Vec<f64>> {        
        let mut eccs = Vec::with_capacity(self.len()); // Vectors for the results
        let gm:Vec<f64> = self.gmedian(eps);
        for v in self {
            eccs.push(gm.vsub(&v))
        }
        eccs
    }


    /// Vector `eccentricity` or measure of  
    /// `not being the geometric median` for a member point.
    /// The true geometric median is as yet unknown.
    /// The true geometric median would return zero.
    /// The member point in question is specified by its index `indx`.
    /// This function is suitable for a single member point. 
    /// When eccentricities of all the points are needed, use `exacteccs` above.
    fn eccmember(self, indx: usize) -> Vec<f64> {
        self.nxmember(indx).vsub(&self[indx])
    }

    /// Eccentricity vector for a non member point,
    /// while the true geometric median is as yet unknown.
    /// Returns the eccentricity vector.
    /// The true geometric median would return zero vector.
    /// This function is suitable for a single non-member point. 
    fn eccnonmember(self, p:&[f64]) -> Vec<f64> {
        self.nxnonmember(p).vsubf64(p)
    }

    /// Mean and Std (in MStats struct), Median and quartiles (in Med struct), Median and Outlier (in MinMax struct) 
    /// of scalar eccentricities of points in self.
    /// These are new robust measures of a cloud of multidimensional points (or multivariate sample).  
    fn eccinfo(self, eps: f64) -> (MStats, Med, MinMax<f64>) where Vec<f64>:FromIterator<f64> {
        let gm:Vec<f64> = self.gmedian(eps);
        let eccs:Vec<f64> = self.iter().map(|v| gm.vdist(&v)).collect();
        (eccs.ameanstd().unwrap(),eccs.median().unwrap(),minmax(&eccs))
    }
     
    /// GM and sorted eccentricities magnitudes.
    /// Describing a set of points `self` in n dimensions
    fn sortedeccs(self, ascending:bool, eps:f64) -> ( Vec<f64>,Vec<f64> ) { 
        let mut eccs = Vec::with_capacity(self.len());       
        let gm = self.gmedian(eps);
        for v in self { // collect raw ecentricities magnitudes
            eccs.push(gm.vdist(&v)) 
        }
        ( gm, sortm(&eccs,ascending) )
    }    

    /// Eccentricity defined Medoid and Outlier.
    /// This can give different results to `medoid` above, defined by sums of distances,
    /// especially for the outliers. See tests.rs.  
    /// Consider some point c and some other points, bunched up at a distance r from c.
    /// The sum of their distances will be nr. Now, spread those points around a circle of radius r from c.
    /// The sum of their distances from c will remain the same but the eccentricity of c will be much reduced.
    /// # Example
    /// ```
    /// use rstats::{Vecg,VecVec,functions::genvec};
    /// pub const EPS:f64 = 1e-7;
    /// let d = 6_usize;
    /// let pt = genvec(d,24,7,13); // random test data 5x20
    /// let mm = pt.emedoid(EPS);
    /// assert_eq!(mm.minindex,10); // index of e-medoid
    /// assert_eq!(mm.maxindex,20);  // index of e-outlier
    /// ```
    fn emedoid(self, eps: f64) -> MinMax<f64> where Vec<f64>:FromIterator<f64> {
    let gm:Vec<f64> = self.gmedian(eps);
    let eccs:Vec<f64> = self.iter().map(|v| gm.vdist(&v)).collect();
    minmax(&eccs)
} 

    /// Vector `eccentricity` or measure of  
    /// `not being the geometric median`, added to a given member point.
    /// The true geometric median is as yet unknown.
    /// The member point in question is specified by its index `indx`.
    /// This function is suitable for a single member point. 
    fn nxmember(self, indx: usize) -> Vec<f64> {
        let n = self.len();
        let mut vsum = vec![0_f64; self[0].len()];
        let thisp = &self[indx];
        let mut recip = 0_f64;
        for i in 0..n {
            if i == indx { continue  }; // exclude this point
            let dvmag = self[i].vdist(&thisp);
            if !dvmag.is_normal() { continue } // too close to this one
            let rec = 1.0/dvmag;
            vsum.mutvadd(&self[i].smultf64(rec)); // add vector
            recip += rec // add separately the reciprocals
        }
        vsum.mutsmult(1.0/recip);
        vsum 
    }

    /// Eccentricity vector added to a non member point,
    /// while the true geometric median is as yet unknown. 
    /// This function is suitable for a single non-member point. 
    fn nxnonmember(self, p:&[f64]) -> Vec<f64> {
        let mut vsum = vec![0_f64; self[0].len()];
        let mut recip = 0_f64;
        for x in self { 
            let dvmag = x.vdistf64(p);
            if !dvmag.is_normal() { continue } // zero distance, safe to ignore
            let rec = 1.0/dvmag;
            vsum.mutvadd(&x.smultf64(rec)); // add vector
            recip += rec // add separately the reciprocals    
        }
        vsum.mutsmult(1.0/recip);
        vsum
    }

    /// Geometric Median (gm) is the point that minimises the sum of distances to a given set of points.
    /// It has (provably) only vector iterative solutions.
    /// Search methods are slow and difficult in highly dimensional space.
    /// Weiszfeld's fixed point iteration formula had known problems with sometimes failing to converge.
    /// Especially, when the points are dense in the close proximity of the gm, or gm coincides with one of them.  
    /// However, these problems are fixed in my new algorithm here.      
    /// There will eventually be a multithreaded version.
    fn nmedian(self, eps: f64) -> Vec<f64> {
        let mut point = self.acentroid(); // start iterating from the Centre
        loop {
            let nextp = self.nxnonmember(&point);         
            if nextp.vdistf64(&point) < eps { return nextp }; // termination
            point = nextp
        } 
    }

    /// Secant method with recovery from divergence
    /// for finding the geometric median
    fn gmedian(self, eps: f64) -> Vec<f64> {  
        let mut p = self.acentroid();
        let mut mag1 = p.vmag();
        let mut pdif = mag1;  
        loop {  
            let mut np = self.nxnonmember(&p); 
            let e = np.vsubf64(&p); // new vector error, or eccentricity  
            // let e = self.errorv(&p);
            let mag2 = e.vmag(); 
            // if mag2 < eps  { return np }; 
            // overwrite np with a better secant estimate  
            np = if mag1 > mag2 {  // eccentricity magnitude decreased, good, employ secant
                e.smultf64(pdif/(mag1-mag2)).vaddf64(&p)
            }
            else { // recovery: probably overshot the minimum, shorten the jump 
                   // e will already be pointing moreless back
                e.smultf64(pdif/(mag1+mag2)).vaddf64(&p)                    
            };
            pdif = np.vdistf64(&p);
            if pdif < eps { return np };              
            mag1 = mag2; 
            p = np            
        }       
    }

    }