rs_sci/calculus.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
use std::f64;
pub struct Calculus;
impl Calculus {
// numerical differentiation
/// calculates first derivative via central difference method
///
/// #### Example
/// ```txt
/// let f = |x| x.powi(2);
/// let derivative = Calculus::derivative(f, 2.0, 0.0001); // ≈ 4.0
/// ```
/// ---
/// provides better accuracy than forward/backward difference by using points on both sides
pub fn derivative<F: Fn(f64) -> f64>(f: F, x: f64, h: f64) -> f64 {
(f(x + h) - f(x - h)) / (2.0 * h)
}
/// computes second derivative using central difference
///
/// #### Example
/// ```txt
/// let f = |x| x.powi(3);
/// let second_deriv = Calculus::second_derivative(f, 2.0, 0.0001);
/// ```
/// ---
/// approximates second derivative with three points
pub fn second_derivative<F: Fn(f64) -> f64>(f: F, x: f64, h: f64) -> f64 {
(f(x + h) - 2.0 * f(x) + f(x - h)) / (h * h)
}
/// finds partial derivative wrt x using central difference
///
/// #### Example
/// ```txt
/// let f = |x, y| x*x + y*y;
/// let dx = Calculus::partial_x(f, 1.0, 2.0, 0.0001); // ≈ 2.0
/// ```
/// ---
/// keeps y constant while differentiating in x direction
pub fn partial_x<F: Fn(f64, f64) -> f64>(f: F, x: f64, y: f64, h: f64) -> f64 {
(f(x + h, y) - f(x - h, y)) / (2.0 * h)
}
/// finds partial derivative wrt y using central difference
///
/// #### Example
/// ```txt
/// let f = |x, y| x*x + y*y;
/// let dy = Calculus::partial_y(f, 1.0, 2.0, 0.0001); // ≈ 4.0
/// ```
/// ---
/// keeps x constant while differentiating in y direction
pub fn partial_y<F: Fn(f64, f64) -> f64>(f: F, x: f64, y: f64, h: f64) -> f64 {
(f(x, y + h) - f(x, y - h)) / (2.0 * h)
}
//numerical integration
/// computes definite integral using rectangle method
///
/// #### Example
/// ```txt
/// let f = |x| x.powi(2);
/// let integral = Calculus::integrate_rectangle(f, 0.0, 1.0, 1000); // ≈ 0.333
/// ```
/// ---
/// approximates area using sum of rectangles with equal width
pub fn integrate_rectangle<F: Fn(f64) -> f64>(f: F, a: f64, b: f64, n: usize) -> f64 {
let dx = (b - a) / n as f64;
let mut sum = 0.0;
for i in 0..n {
let x = a + dx * i as f64;
sum += f(x);
}
sum * dx
}
/// computes definite integral using trapezoidal method
///
/// #### Example
/// ```txt
/// let f = |x| x.powi(2);
/// let integral = Calculus::integrate_trapezoid(f, 0.0, 1.0, 1000); // ≈ 0.333
/// ```
/// ---
/// uses linear approximation between points for better accuracy than rectangle method
pub fn integrate_trapezoid<F: Fn(f64) -> f64>(f: F, a: f64, b: f64, n: usize) -> f64 {
let dx = (b - a) / n as f64;
let mut sum = (f(a) + f(b)) / 2.0;
for i in 1..n {
let x = a + dx * i as f64;
sum += f(x);
}
sum * dx
}
/// computes definite integral using simpson's method
///
/// #### Example
/// ```txt
/// let f = |x| x.powi(2);
/// let integral = Calculus::integrate_simpson(f, 0.0, 1.0, 1000); // ≈ 0.333
/// ```
/// ---
/// uses quadratic approximation for higher accuracy than trapezoid method
pub fn integrate_simpson<F: Fn(f64) -> f64>(f: F, a: f64, b: f64, n: usize) -> f64 {
if n % 2 != 0 {
panic!("n must be even for Simpson's rule");
}
let dx = (b - a) / n as f64;
let mut sum = f(a) + f(b);
for i in 1..n {
let x = a + dx * i as f64;
sum += if i % 2 == 0 { 2.0 } else { 4.0 } * f(x);
}
sum * dx / 3.0
}
// differentials
/// solves first-order ODE using euler's method
///
/// #### Example
/// ```txt
/// let f = |x, y| x + y;
/// let solution = Calculus::euler(f, 0.0, 1.0, 0.1, 10);
/// ```
/// ---
/// basic numerical method for ODEs using linear approximation
pub fn euler<F: Fn(f64, f64) -> f64>(
f: F, // dy/dx = f(x, y)
x0: f64, // initial x
y0: f64, // initial y
h: f64, // step size
steps: usize, // number of steps
) -> Vec<(f64, f64)> {
let mut result = vec![(x0, y0)];
let mut x = x0;
let mut y = y0;
for _ in 0..steps {
y = y + h * f(x, y);
x = x + h;
result.push((x, y));
}
result
}
/// solves ODE using 4th order runge-kutta method
///
/// #### Example
/// ```txt
/// let f = |x, y| x + y;
/// let solution = Calculus::runge_kutta4(f, 0.0, 1.0, 0.1, 10);
/// ```
/// ---
/// more accurate than euler's method by using weighted average of slopes
pub fn runge_kutta4<F: Fn(f64, f64) -> f64>(
f: F,
x0: f64,
y0: f64,
h: f64,
steps: usize,
) -> Vec<(f64, f64)> {
let mut result = vec![(x0, y0)];
let mut x = x0;
let mut y = y0;
for _ in 0..steps {
let k1 = h * f(x, y);
let k2 = h * f(x + h / 2.0, y + k1 / 2.0);
let k3 = h * f(x + h / 2.0, y + k2 / 2.0);
let k4 = h * f(x + h, y + k3);
y = y + (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0;
x = x + h;
result.push((x, y));
}
result
}
// series and limits
/// approximates function using taylor series expansion
///
/// #### Example
/// ```txt
/// let f = |x| x.exp();
/// let df = [|x| x.exp()]; // derivatives
/// let approx = Calculus::taylor_series(f, &df, 0.0, 0.1, 2);
/// ```
/// ---
/// uses function and its derivatives to create polynomial approximation
pub fn taylor_series<F: Fn(f64) -> f64>(
f: F, // function
df: &[F], // array of derivative functions
a: f64, // expansion point
x: f64, // evaluation point
terms: usize, // number of terms
) -> f64 {
let mut sum = f(a);
let mut factorial = 1.0;
let mut power = 1.0;
for (n, derivative) in df.iter().take(terms - 1).enumerate() {
factorial *= (n + 1) as f64;
power *= x - a;
sum += derivative(a) * power / factorial;
}
sum
}
// vector calc
/// computes gradient of 2D scalar field
///
/// #### Example
/// ```txt
/// let f = |x, y| x*x + y*y;
/// let grad = Calculus::gradient(f, 1.0, 1.0, 0.0001);
/// ```
/// ---
/// returns vector of partial derivatives (∂f/∂x, ∂f/∂y)
pub fn gradient<F: Fn(f64, f64) -> f64>(f: F, x: f64, y: f64, h: f64) -> (f64, f64) {
(Self::partial_x(&f, x, y, h), Self::partial_y(&f, x, y, h))
}
/// calculates divergence of 2D vector field
///
/// #### Example
/// ```txt
/// let f = |x, y| (x*y, x+y);
/// let div = Calculus::divergence(f, 1.0, 1.0, 0.0001);
/// ```
/// ---
/// computes sum of partial derivatives ∂P/∂x + ∂Q/∂y
pub fn divergence<F: Fn(f64, f64) -> (f64, f64)>(f: F, x: f64, y: f64, h: f64) -> f64 {
let dx = |x, y| (f(x + h, y).0 - f(x - h, y).0) / (2.0 * h);
let dy = |x, y| (f(x, y + h).1 - f(x, y - h).1) / (2.0 * h);
dx(x, y) + dy(x, y)
}
/// finds z-component of curl for 2D vector field
///
/// #### Example
/// ```txt
/// let f = |x, y| (x*y, x+y);
/// let curl = Calculus::curl_z(f, 1.0, 1.0, 0.0001);
/// ```
/// ---
/// computes \partial Q/\partial x - \partial P/\partial y
pub fn curl_z<F: Fn(f64, f64) -> (f64, f64)>(f: F, x: f64, y: f64, h: f64) -> f64 {
let dy_dx = (f(x + h, y).1 - f(x - h, y).1) / (2.0 * h);
let dx_dy = (f(x, y + h).0 - f(x, y - h).0) / (2.0 * h);
dy_dx - dx_dy
}
// optimization
/// finds local minimum using gradient descent
///
/// #### Example
/// ```txt
/// let f = |x, y| x*x + y*y;
/// let min = Calculus::gradient_descent(f, 1.0, 1.0, 0.1, 1e-6, 1000);
/// ```
/// ---
/// iteratively moves in direction of steepest descent
pub fn gradient_descent<F: Fn(f64, f64) -> f64>(
f: F,
mut x: f64,
mut y: f64,
learning_rate: f64,
tolerance: f64,
max_iterations: usize,
) -> (f64, f64) {
for _ in 0..max_iterations {
let (dx, dy) = Self::gradient(&f, x, y, 1e-6);
let new_x = x - learning_rate * dx;
let new_y = y - learning_rate * dy;
if (new_x - x).abs() < tolerance && (new_y - y).abs() < tolerance {
break;
}
x = new_x;
y = new_y;
}
(x, y)
}
}