rs-pfcp 0.1.1

High-performance Rust implementation of PFCP (Packet Forwarding Control Protocol) for 5G networks with 100% 3GPP TS 29.244 Release 18 compliance
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# PFCP API Guide

This guide provides developers with practical knowledge for using the rs-pfcp library effectively. It bridges the gap between the [README](README.md) and detailed technical specifications.

## ๐ŸŽฏ Target Audience

- **5G Network Developers** building SMF/UPF components
- **Telecom Engineers** implementing PFCP protocol handlers
- **Rust Developers** new to 5G networking protocols
- **System Integrators** connecting 5G core components

## ๐Ÿ—๏ธ Core API Concepts

### 1. Message Architecture

All PFCP communication revolves around **Messages** and **Information Elements (IEs)**:

```rust
use rs_pfcp::message::Message;
use rs_pfcp::ie::{Ie, IeType};

// Every message implements the Message trait
pub trait Message {
    fn marshal(&self) -> Vec<u8>;           // Serialize to bytes
    fn unmarshal(data: &[u8]) -> Result<Self, io::Error>; // Parse from bytes
    fn msg_type(&self) -> MsgType;          // Get message type
    fn seid(&self) -> Option<u64>;          // Session Endpoint ID
    fn sequence(&self) -> u32;              // Message sequence number
    fn find_ie(&self, ie_type: IeType) -> Option<&Ie>; // Find specific IE
}
```

### 2. Information Elements (IEs)

IEs are the building blocks of PFCP messages. The library provides 70 fully implemented IE types:

```rust
use rs_pfcp::ie::*;

// Core IEs for session management
let node_id = NodeId::from_ipv4("10.0.0.1".parse()?);
let cause = Cause::new(CauseValue::RequestAccepted);
let fseid = Fseid::new(session_id, "192.168.1.10".parse()?);

// Convert to generic IE for message inclusion
let node_id_ie = node_id.to_ie();
let cause_ie = cause.to_ie();
let fseid_ie = fseid.to_ie();
```

### 3. Builder Patterns

Complex messages use builder patterns for intuitive construction:

```rust
use rs_pfcp::message::{SessionEstablishmentRequestBuilder, SessionReportResponseBuilder};

// Session establishment with multiple rules
let request = SessionEstablishmentRequestBuilder::new(session_id, sequence)
    .node_id(node_id_ie)
    .fseid(fseid_ie)
    .create_pdrs(vec![pdr_ie])
    .create_fars(vec![far_ie])
    .create_urrs(vec![urr_ie])    // Optional
    .build()?;

// Session report response
let response = SessionReportResponseBuilder::new(session_id, sequence, cause_ie)
    .update_bars(vec![bar_ie])   // Optional
    .build()?;
```

## ๐Ÿš€ Common Usage Patterns

### 1. Basic Message Handling

```rust
use rs_pfcp::message::{parse, MsgType};
use std::net::UdpSocket;

// Receive and parse messages
let socket = UdpSocket::bind("0.0.0.0:8805")?;
let mut buffer = [0; 4096];

loop {
    let (size, addr) = socket.recv_from(&mut buffer)?;

    // Parse any PFCP message type
    match parse(&buffer[..size]) {
        Ok(message) => {
            println!("Received {} from {}", message.msg_name(), addr);

            match message.msg_type() {
                MsgType::HeartbeatRequest => {
                    // Handle heartbeat
                    let response = create_heartbeat_response(&message)?;
                    socket.send_to(&response.marshal(), addr)?;
                }
                MsgType::SessionEstablishmentRequest => {
                    // Handle session establishment
                    handle_session_establishment(&message, addr)?;
                }
                _ => println!("Unhandled message type: {:?}", message.msg_type()),
            }
        }
        Err(e) => eprintln!("Failed to parse message: {}", e),
    }
}
```

### 2. Session Lifecycle Management

```rust
use rs_pfcp::message::*;
use rs_pfcp::ie::*;

// Establish Session (SMF โ†’ UPF)
async fn establish_session(upf_addr: SocketAddr, session_id: u64) -> Result<(), Box<dyn Error>> {
    let request = SessionEstablishmentRequestBuilder::new(session_id, get_sequence())
        .node_id(NodeId::from_ipv4("10.0.0.1".parse()?).to_ie())
        .fseid(Fseid::new(session_id, "192.168.1.10".parse()?).to_ie())
        .create_pdrs(vec![
            create_uplink_pdr()?,
            create_downlink_pdr()?,
        ])
        .create_fars(vec![
            create_uplink_far()?,
            create_downlink_far()?,
        ])
        .build()?;

    send_and_await_response(upf_addr, request).await?;
    Ok(())
}

// Modify Session (SMF โ†’ UPF)
async fn modify_session(upf_addr: SocketAddr, session_id: u64) -> Result<(), Box<dyn Error>> {
    let request = SessionModificationRequestBuilder::new(session_id, get_sequence())
        .fseid(Fseid::new(session_id, "192.168.1.10".parse()?).to_ie())
        .update_pdrs(vec![updated_pdr_ie])
        .update_fars(vec![updated_far_ie])
        .remove_pdrs(vec![PdrId::new(5).to_ie()])  // Remove specific rules
        .build();

    send_and_await_response(upf_addr, request).await?;
    Ok(())
}

// Delete Session (SMF โ†’ UPF)
async fn delete_session(upf_addr: SocketAddr, session_id: u64) -> Result<(), Box<dyn Error>> {
    let request = SessionDeletionRequest::new(
        session_id,
        get_sequence(),
        Fseid::new(session_id, "192.168.1.10".parse()?).to_ie(),
        /* usage_information_request */ None,
        /* user_plane_inactivity_timer */ None,
    );

    send_and_await_response(upf_addr, request).await?;
    Ok(())
}
```

### 3. Usage Reporting and Event Handling

```rust
use rs_pfcp::message::SessionReportRequest;
use rs_pfcp::ie::{UsageReportTrigger, UsageReport};

// Handle usage reports (UPF โ†’ SMF)
fn handle_usage_report(message: &SessionReportRequest) -> Result<SessionReportResponse, Box<dyn Error>> {
    // Check report type
    if let Some(report_type_ie) = message.find_ie(IeType::ReportType) {
        let report_type = ReportType::unmarshal(&report_type_ie.payload)?;

        if report_type.contains(ReportTypeFlags::USAR) {
            // Process usage reports
            for ie in &message.ies {
                if ie.ie_type == IeType::UsageReport {
                    let usage_report = UsageReport::unmarshal(&ie.payload)?;

                    if usage_report.usage_report_trigger().contains(UsageReportTrigger::VOLTH) {
                        println!("๐Ÿ“Š Volume quota exhausted for URR ID: {}",
                                usage_report.urr_id().as_u32());

                        // Grant additional quota or terminate session
                        handle_quota_exhaustion(&usage_report)?;
                    }
                }
            }
        }
    }

    // Send acknowledgment
    SessionReportResponseBuilder::new(
        message.seid().unwrap(),
        message.sequence(),
        Cause::new(CauseValue::RequestAccepted).to_ie()
    ).build()
}
```

### 4. Node Association Management

```rust
use rs_pfcp::message::{AssociationSetupRequest, AssociationSetupResponse};

// Establish node association (SMF โ†” UPF)
async fn establish_association(peer_addr: SocketAddr) -> Result<(), Box<dyn Error>> {
    let request = AssociationSetupRequest::new(
        get_sequence(),
        NodeId::from_ipv4("10.0.0.1".parse()?).to_ie(),
        RecoveryTimeStamp::now().to_ie(),
        /* up_function_features */ None,
        /* cp_function_features */ Some(get_cp_features().to_ie()),
        /* user_plane_ip_resource_information */ None,
        /* graceful_release_period */ None,
        /* pfcp_association_release_request */ None,
    );

    let response: AssociationSetupResponse = send_and_await_response(peer_addr, request).await?;

    // Check if association was accepted
    if let Some(cause_ie) = response.find_ie(IeType::Cause) {
        let cause = Cause::unmarshal(&cause_ie.payload)?;
        match cause.cause_value() {
            CauseValue::RequestAccepted => {
                println!("โœ… Association established with {}", peer_addr);
                Ok(())
            }
            other => {
                eprintln!("โŒ Association failed: {:?}", other);
                Err(format!("Association rejected: {:?}", other).into())
            }
        }
    } else {
        Err("No cause IE in association response".into())
    }
}
```

## ๐Ÿ›ก๏ธ Error Handling Best Practices

### 1. Comprehensive Error Strategy

```rust
use std::io::{Error, ErrorKind};

// Custom error types for different failure scenarios
#[derive(Debug)]
pub enum PfcpError {
    InvalidMessage(String),
    NetworkError(std::io::Error),
    ProtocolError(CauseValue),
    TimeoutError,
}

impl From<std::io::Error> for PfcpError {
    fn from(e: std::io::Error) -> Self {
        PfcpError::NetworkError(e)
    }
}

// Robust message processing with error handling
fn process_message(data: &[u8]) -> Result<(), PfcpError> {
    let message = parse(data)
        .map_err(|e| PfcpError::InvalidMessage(format!("Parse failed: {}", e)))?;

    match message.msg_type() {
        MsgType::SessionEstablishmentRequest => {
            // Validate mandatory IEs
            validate_session_establishment(&message)?;
            handle_session_establishment(&message)?;
        }
        MsgType::SessionReportRequest => {
            handle_session_report(&message)?;
        }
        _ => {
            return Err(PfcpError::InvalidMessage(
                format!("Unsupported message type: {:?}", message.msg_type())
            ));
        }
    }

    Ok(())
}

// IE validation patterns
fn validate_session_establishment(message: &dyn Message) -> Result<(), PfcpError> {
    // Check for mandatory IEs
    let required_ies = [IeType::NodeId, IeType::Fseid];

    for &ie_type in &required_ies {
        if message.find_ie(ie_type).is_none() {
            return Err(PfcpError::ProtocolError(CauseValue::MandatoryIeMissing));
        }
    }

    Ok(())
}
```

### 2. Network Error Recovery

```rust
use std::time::Duration;
use tokio::time::timeout;

// Reliable message sending with retries
async fn send_with_retry<T: Message>(
    socket: &UdpSocket,
    addr: SocketAddr,
    message: T,
    max_retries: u32
) -> Result<(), PfcpError> {
    let data = message.marshal();

    for attempt in 1..=max_retries {
        match timeout(Duration::from_secs(5), socket.send_to(&data, addr)).await {
            Ok(Ok(_)) => return Ok(()),
            Ok(Err(e)) => {
                eprintln!("Send attempt {} failed: {}", attempt, e);
                if attempt == max_retries {
                    return Err(PfcpError::NetworkError(e));
                }
            }
            Err(_) => {
                eprintln!("Send attempt {} timed out", attempt);
                if attempt == max_retries {
                    return Err(PfcpError::TimeoutError);
                }
            }
        }

        // Exponential backoff
        tokio::time::sleep(Duration::from_millis(100 * (1 << attempt))).await;
    }

    unreachable!()
}
```

## โšก Performance Optimization

### 1. Efficient Memory Usage

```rust
// Reuse buffers for repeated operations
struct PfcpHandler {
    recv_buffer: Vec<u8>,
    send_buffer: Vec<u8>,
}

impl PfcpHandler {
    fn new() -> Self {
        Self {
            recv_buffer: vec![0; 4096],  // Pre-allocate
            send_buffer: Vec::with_capacity(1024),
        }
    }

    async fn handle_message(&mut self, socket: &UdpSocket) -> Result<(), PfcpError> {
        // Reuse existing buffer
        let (size, addr) = socket.recv_from(&mut self.recv_buffer).await?;

        let message = parse(&self.recv_buffer[..size])?;

        // Process without additional allocations where possible
        let response = self.create_response(&message)?;

        // Reuse send buffer
        self.send_buffer.clear();
        self.send_buffer.extend_from_slice(&response.marshal());
        socket.send_to(&self.send_buffer, addr).await?;

        Ok(())
    }
}
```

### 2. Batch Processing

```rust
// Efficient batch session operations
async fn batch_session_operations(
    upf_addr: SocketAddr,
    operations: Vec<SessionOperation>
) -> Result<(), PfcpError> {
    // Group operations by type for better efficiency
    let mut establishments = Vec::new();
    let mut modifications = Vec::new();
    let mut deletions = Vec::new();

    for op in operations {
        match op {
            SessionOperation::Establish(req) => establishments.push(req),
            SessionOperation::Modify(req) => modifications.push(req),
            SessionOperation::Delete(req) => deletions.push(req),
        }
    }

    // Process in optimal order: establish โ†’ modify โ†’ delete
    for req in establishments {
        send_and_await_response(upf_addr, req).await?;
    }

    for req in modifications {
        send_and_await_response(upf_addr, req).await?;
    }

    for req in deletions {
        send_and_await_response(upf_addr, req).await?;
    }

    Ok(())
}
```

## ๐Ÿงช Testing and Debugging

### 1. Message Inspection

The library provides excellent debugging capabilities:

```rust
use rs_pfcp::message::MessageDisplay;

// Detailed message analysis
fn debug_message(data: &[u8]) -> Result<(), Box<dyn Error>> {
    let message = parse(data)?;

    // Human-readable YAML output
    println!("Message YAML:\n{}", message.to_yaml()?);

    // JSON for programmatic analysis
    println!("Message JSON:\n{}", message.to_json_pretty()?);

    // Inspect specific IEs
    if let Some(fseid_ie) = message.find_ie(IeType::Fseid) {
        let fseid = Fseid::unmarshal(&fseid_ie.payload)?;
        println!("F-SEID: Session ID={:016x}, IP={}",
                 fseid.seid(), fseid.ipv4_address().unwrap_or("N/A".parse().unwrap()));
    }

    Ok(())
}
```

### 2. Protocol Compliance Testing

```rust
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_session_establishment_round_trip() {
        // Test complete marshal/unmarshal cycle
        let original_request = SessionEstablishmentRequestBuilder::new(0x123456789abcdef0, 42)
            .node_id(NodeId::from_ipv4("10.0.0.1".parse().unwrap()).to_ie())
            .fseid(Fseid::new(0x123456789abcdef0, "192.168.1.1".parse().unwrap()).to_ie())
            .create_pdrs(vec![create_test_pdr()])
            .create_fars(vec![create_test_far()])
            .build()
            .unwrap();

        // Serialize
        let bytes = original_request.marshal();

        // Parse back
        let parsed_message = parse(&bytes).unwrap();

        // Verify identity
        assert_eq!(parsed_message.msg_type(), MsgType::SessionEstablishmentRequest);
        assert_eq!(parsed_message.seid(), Some(0x123456789abcdef0));
        assert_eq!(parsed_message.sequence(), 42);

        // Verify IEs are preserved
        assert!(parsed_message.find_ie(IeType::NodeId).is_some());
        assert!(parsed_message.find_ie(IeType::Fseid).is_some());
    }

    #[test]
    fn test_3gpp_compliance() {
        // Test specific 3GPP TS 29.244 requirements
        let fteid = FTeid::new_ipv4_with_choose(0x12345678, "10.0.0.1".parse().unwrap());

        // Verify CHOOSE flag encoding
        let bytes = fteid.marshal();
        assert_eq!(bytes[0] & 0x01, 0x01); // V4 flag
        assert_eq!(bytes[0] & 0x02, 0x00); // V6 flag
        assert_eq!(bytes[0] & 0x04, 0x04); // CH flag

        // Test round-trip
        let parsed = FTeid::unmarshal(&bytes).unwrap();
        assert_eq!(parsed.teid(), 0x12345678);
        assert!(parsed.has_choose_flag());
    }
}
```

## ๐Ÿ”— Integration Patterns

### 1. Async/Await Integration

```rust
use tokio::net::UdpSocket;
use std::sync::Arc;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let socket = Arc::new(UdpSocket::bind("0.0.0.0:8805").await?);
    let mut buffer = [0; 4096];

    println!("PFCP server listening on 0.0.0.0:8805");

    loop {
        let (size, addr) = socket.recv_from(&mut buffer).await?;
        let socket_clone = Arc::clone(&socket);

        // Handle each message in a separate task
        tokio::spawn(async move {
            if let Err(e) = handle_message(&buffer[..size], addr, socket_clone).await {
                eprintln!("Error handling message from {}: {}", addr, e);
            }
        });
    }
}
```

### 2. State Management

```rust
use std::collections::HashMap;
use std::sync::{Arc, RwLock};

#[derive(Debug, Clone)]
pub struct SessionState {
    pub seid: u64,
    pub node_id: String,
    pub active_pdrs: Vec<u16>,
    pub active_fars: Vec<u32>,
    pub last_activity: std::time::Instant,
}

pub struct PfcpSessionManager {
    sessions: Arc<RwLock<HashMap<u64, SessionState>>>,
}

impl PfcpSessionManager {
    pub fn new() -> Self {
        Self {
            sessions: Arc::new(RwLock::new(HashMap::new())),
        }
    }

    pub async fn handle_session_establishment(
        &self,
        request: &SessionEstablishmentRequest
    ) -> Result<SessionEstablishmentResponse, PfcpError> {
        let session_id = request.seid().unwrap();

        // Validate request
        self.validate_establishment_request(request)?;

        // Create session state
        let session_state = SessionState {
            seid: session_id,
            node_id: extract_node_id(request)?,
            active_pdrs: extract_pdr_ids(request),
            active_fars: extract_far_ids(request),
            last_activity: std::time::Instant::now(),
        };

        // Store session
        {
            let mut sessions = self.sessions.write().unwrap();
            sessions.insert(session_id, session_state);
        }

        // Create response with allocated resources
        Ok(create_session_establishment_response(request, session_id)?)
    }
}
```

## ๐Ÿ“š Next Steps

After mastering these API concepts, explore:

1. **[EXAMPLES_GUIDE.md]EXAMPLES_GUIDE.md** - Detailed walkthrough of working examples
2. **[PFCP_MESSAGES.md]PFCP_MESSAGES.md** - Complete message type reference
3. **[IE_SUPPORT.md]IE_SUPPORT.md** - Information Element implementation details
4. **[SESSION_REPORT_DEMO.md]examples/SESSION_REPORT_DEMO.md** - Real-world usage reporting scenario

## ๐Ÿค Community

- **Found a bug?** Please report it in our issue tracker
- **Need help?** Check our documentation or ask in discussions
- **Want to contribute?** See our contributing guidelines

---

**Happy coding with rs-pfcp! ๐Ÿš€** Build robust 5G networks with confidence.