rp2040-hal 0.10.2

A Rust Embedded-HAL impl for the rp2040 microcontroller
Documentation
//! # DHT11 Example
//!
//! This application demonstrates how to read a DHT11 sensor on the RP2040.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//! In this example, the DHT11 data pin should be connected to GPIO28.
//!
//! NOTE: The DHT11 driver only works reliably when compiled in release mode.
//!
//! See the `Cargo.toml` file for Copyright and license details.

#![no_std]
#![no_main]

// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use panic_halt as _;

// Alias for our HAL crate
use rp2040_hal as hal;

// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::pac;

// Some traits we need
use embedded_hal::digital::OutputPin;
use hal::Clock;

/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
/// Note: This boot block is not necessary when using a rp-hal based BSP
/// as the BSPs already perform this step.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;

/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;

use dht_sensor::{dht11, DhtReading};

/// Entry point to our bare-metal application.
///
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables and the spinlock are initialised.
///
/// The function configures the RP2040 peripherals, assigns GPIO 28 to the
/// DHT11 driver, and takes a single measurement.
#[rp2040_hal::entry]
fn main() -> ! {
    // Grab our singleton objects
    let mut pac = pac::Peripherals::take().unwrap();
    let core = pac::CorePeripherals::take().unwrap();

    // Set up the watchdog driver - needed by the clock setup code
    let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);

    // Configure the clocks
    let clocks = hal::clocks::init_clocks_and_plls(
        XTAL_FREQ_HZ,
        pac.XOSC,
        pac.CLOCKS,
        pac.PLL_SYS,
        pac.PLL_USB,
        &mut pac.RESETS,
        &mut watchdog,
    )
    .unwrap();

    // The single-cycle I/O block controls our GPIO pins
    let sio = hal::Sio::new(pac.SIO);

    // Set the pins to their default state
    let pins = hal::gpio::Pins::new(
        pac.IO_BANK0,
        pac.PADS_BANK0,
        sio.gpio_bank0,
        &mut pac.RESETS,
    );

    let mut delay = cortex_m::delay::Delay::new(core.SYST, clocks.system_clock.freq().to_Hz());

    // Use GPIO 28 as an InOutPin
    let mut pin = hal::gpio::InOutPin::new(pins.gpio28);
    let _ = pin.set_high();

    // Perform a sensor reading
    let _measurement = dht11::Reading::read(&mut delay, &mut pin);

    // In this case, we just ignore the result. A real application
    // would do something with the measurement.

    loop {
        cortex_m::asm::wfi();
    }
}

// End of file