1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
use crate::{
    osu::osu_object::{NestedObjectKind, OsuObjectKind},
    parse::Pos2,
};

use super::{osu_object::OsuSlider, OsuObject, ScalingFactor};

#[derive(Clone, Debug)]
pub(crate) struct OsuDifficultyObject<'h> {
    pub(crate) start_time: f64,
    pub(crate) delta_time: f64,
    pub(crate) base: &'h OsuObject,
    pub(crate) strain_time: f64,
    pub(crate) dists: Distances,
    pub(crate) idx: usize,
}

impl<'h> OsuDifficultyObject<'h> {
    pub(crate) const MIN_DELTA_TIME: u32 = 25;

    pub(crate) fn new(
        base: &'h OsuObject,
        last: &'h OsuObject,
        clock_rate: f64,
        idx: usize,
        dists: Distances,
    ) -> Self {
        let start_time = base.start_time / clock_rate;
        let delta_time = (base.start_time - last.start_time) / clock_rate;

        // * Capped to 25ms to prevent difficulty calculation breaking from simultaneous objects.
        let strain_time = delta_time.max(Self::MIN_DELTA_TIME as f64);

        Self {
            start_time,
            delta_time,
            base,
            strain_time,
            dists,
            idx,
        }
    }

    pub(crate) fn opacity_at(
        &self,
        time: f64,
        hidden: bool,
        time_preempt: f64,
        time_fade_in: f64,
    ) -> f64 {
        if time > self.base.start_time {
            // * Consider a hitobject as being invisible when its start time is passed.
            // * In reality the hitobject will be visible beyond its start time up until its hittable window has passed,
            // * but this is an approximation and such a case is unlikely to be hit where this function is used.
            return 0.0;
        }

        let fade_in_start_time = self.base.start_time - time_preempt;
        let fade_in_duration = time_fade_in;

        if hidden {
            // * Taken from OsuModHidden.
            let fade_out_start_time = self.base.start_time - time_preempt + time_fade_in;
            const FADE_OUT_DURATION_MULTIPLIER: f64 = 0.3;
            let fade_out_duration = time_preempt * FADE_OUT_DURATION_MULTIPLIER;

            (((time - fade_in_start_time) / fade_in_duration).clamp(0.0, 1.0))
                .min(1.0 - ((time - fade_out_start_time) / fade_out_duration).clamp(0.0, 1.0))
        } else {
            ((time - fade_in_start_time) / fade_in_duration).clamp(0.0, 1.0)
        }
    }
}

#[derive(Clone, Debug, Default)]
pub(crate) struct Distances {
    pub(crate) lazy_jump_dist: f64,
    pub(crate) lazy_travel_dist: f32,
    pub(crate) min_jump_dist: f64,
    pub(crate) min_jump_time: f64,
    pub(crate) travel_dist: f64,
    pub(crate) travel_time: f64,
    pub(crate) angle: Option<f64>,
}

impl Distances {
    pub(crate) const NORMALISED_RADIUS: f32 = 50.0;

    const MAXIMUM_SLIDER_RADIUS: f32 = Self::NORMALISED_RADIUS * 2.4;
    const ASSUMED_SLIDER_RADIUS: f32 = Self::NORMALISED_RADIUS * 1.8;

    pub(crate) fn new(
        base: &mut OsuObject,
        last: &OsuObject,
        last_last: Option<&OsuObject>,
        clock_rate: f64,
        strain_time: f64,
        scaling_factor_: &ScalingFactor,
    ) -> Self {
        let mut this =
            if let Some(slider_values) = Self::compute_slider_cursor_pos(base, scaling_factor_) {
                let SliderValues {
                    lazy_travel_dist,
                    slider,
                } = slider_values;

                let repeat_count = slider.repeat_count();

                Self {
                    // * Bonus for repeat sliders until a better per nested object strain system can be achieved.
                    travel_dist: (lazy_travel_dist
                        * (1.0 + repeat_count as f64 / 2.5).powf(1.0 / 2.5) as f32)
                        as f64,
                    travel_time: (base.lazy_travel_time() / clock_rate)
                        .max(OsuDifficultyObject::MIN_DELTA_TIME as f64),
                    lazy_travel_dist,
                    ..Default::default()
                }
            } else {
                Self::default()
            };

        // * We don't need to calculate either angle or distance when
        // * one of the last->curr objects is a spinner
        if base.is_spinner() || last.is_spinner() {
            return this;
        }

        // * We will scale distances by this factor, so we can assume a uniform CircleSize among beatmaps.
        let scaling_factor = scaling_factor_.factor;

        let last_cursor_pos = Self::get_end_cursor_pos(last);

        this.lazy_jump_dist = (base.stacked_pos() * scaling_factor
            - last_cursor_pos * scaling_factor)
            .length() as f64;
        this.min_jump_time = strain_time;
        this.min_jump_dist = this.lazy_jump_dist;

        if let OsuObjectKind::Slider(slider) = &last.kind {
            let last_travel_time = (last.lazy_travel_time() / clock_rate)
                .max(OsuDifficultyObject::MIN_DELTA_TIME as f64);
            this.min_jump_time =
                (strain_time - last_travel_time).max(OsuDifficultyObject::MIN_DELTA_TIME as f64);

            // * There are two types of slider-to-object patterns to consider in order
            // * to better approximate the real movement a player will take to jump between the hitobjects.
            // *
            // * 1. The anti-flow pattern, where players cut the slider short in order to move to the next hitobject.
            // *
            // *     <======o==>  ← slider
            // *            |     ← most natural jump path
            // *            o     ← a follow-up hitcircle
            // *
            // * In this case the most natural jump path is approximated by LazyJumpDistance.
            // *
            // * 2. The flow pattern, where players follow through the slider to its
            // * visual extent into the next hitobject.
            // *
            // *     <======o==>---o
            // *                 ↑
            // *       most natural jump path
            // *
            // * In this case the most natural jump path is better approximated by a new distance
            // * called "tailJumpDistance" - the distance between the slider's tail and the next hitobject.
            // *
            // * Thus, the player is assumed to jump the minimum of these two distances in all cases.

            let stacked_tail_pos =
                slider.tail().map_or_else(|| last.pos(), |tail| tail.pos) + last.stack_offset;

            let tail_jump_dist = (stacked_tail_pos - base.stacked_pos()).length() * scaling_factor;

            let diff = (Self::MAXIMUM_SLIDER_RADIUS - Self::ASSUMED_SLIDER_RADIUS) as f64;
            let min = (tail_jump_dist - Self::MAXIMUM_SLIDER_RADIUS) as f64;

            // "attributes on expressions are experimental see issue #15701 https://github.com/rust-lang/rust/issues/15701"
            // rust pls...
            #[allow(clippy::manual_clamp)]
            let tmp = (this.lazy_jump_dist - diff).min(min).max(0.0);
            this.min_jump_dist = tmp;
        }

        if let Some(last_last) = last_last.filter(|obj| !obj.is_spinner()) {
            let last_last_cursor_pos = Self::get_end_cursor_pos(last_last);

            let v1 = last_last_cursor_pos - last.stacked_pos();
            let v2 = base.stacked_pos() - last_cursor_pos;

            let dot = v1.dot(v2) as f64;
            let det = (v1.x * v2.y - v1.y * v2.x) as f64;

            this.angle = Some(det.atan2(dot).abs());
        }

        this
    }

    pub(crate) fn compute_slider_cursor_pos<'h>(
        hit_object: &'h mut OsuObject,
        scaling_factor_: &ScalingFactor,
    ) -> Option<SliderValues<'h>> {
        let pos = hit_object.pos();

        let slider = if let OsuObjectKind::Slider(slider) = &mut hit_object.kind {
            slider
        } else {
            return None;
        };

        let mut curr_cursor_pos = pos + hit_object.stack_offset;
        let scaling_factor = Self::NORMALISED_RADIUS as f64 / scaling_factor_.radius as f64;

        let mut lazy_travel_dist: f32 = 0.0;

        for (curr_movement_obj, i) in slider.nested_objects.iter().zip(1..) {
            let mut curr_movement =
                (curr_movement_obj.pos + hit_object.stack_offset) - curr_cursor_pos;
            let mut curr_movement_len = scaling_factor * curr_movement.length() as f64;

            // * Amount of movement required so that the cursor position needs to be updated.
            let mut required_movement = Self::ASSUMED_SLIDER_RADIUS as f64;

            if i == slider.nested_objects.len() {
                // * The end of a slider has special aim rules due
                // * to the relaxed time constraint on position.
                // * There is both a lazy end position as well as the actual end slider position.
                // * We assume the player takes the simpler movement.
                // * For sliders that are circular, the lazy end position
                // * may actually be farther away than the sliders true end.
                // * This code is designed to prevent buffing situations
                // * where lazy end is actually a less efficient movement.
                let lazy_movement = slider.lazy_end_pos - curr_cursor_pos;

                if lazy_movement.length() < curr_movement.length() {
                    curr_movement = lazy_movement;
                }

                curr_movement_len = scaling_factor * curr_movement.length() as f64;
            } else if let NestedObjectKind::Repeat = curr_movement_obj.kind {
                // * For a slider repeat, assume a tighter movement threshold to better assess repeat sliders.
                required_movement = Self::NORMALISED_RADIUS as f64;
            }

            if curr_movement_len > required_movement {
                // * this finds the positional delta from the required radius and the current position, and updates the currCursorPosition accordingly, as well as rewarding distance.
                curr_cursor_pos += curr_movement
                    * ((curr_movement_len - required_movement) / curr_movement_len) as f32;
                curr_movement_len *= (curr_movement_len - required_movement) / curr_movement_len;
                lazy_travel_dist += curr_movement_len as f32;
            }
        }

        slider.lazy_end_pos = curr_cursor_pos;

        Some(SliderValues {
            lazy_travel_dist,
            slider,
        })
    }

    fn get_end_cursor_pos(hit_object: &OsuObject) -> Pos2 {
        hit_object.lazy_end_pos()
    }
}

pub(crate) struct SliderValues<'s> {
    lazy_travel_dist: f32,
    slider: &'s OsuSlider,
}