1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! This module provides some handy iterator extensions.

#[cfg(test)]
#[path = "../../tests/unit/utils/iterators_test.rs"]
mod iterators_test;

use crate::utils::Random;
use std::collections::HashMap;
use std::hash::Hash;
use std::sync::Arc;

/// An iterator which collects items into group.
pub trait CollectGroupBy: Iterator {
    /// Collects items into group.
    fn collect_group_by_key<K, V, FA>(self, f: FA) -> HashMap<K, Vec<V>>
    where
        Self: Sized + Iterator<Item = V>,
        K: Hash + Eq,
        FA: Fn(&V) -> K,
    {
        self.map(|v| (f(&v), v)).collect_group_by()
    }

    /// Collects items into group.
    fn collect_group_by<K, V>(self) -> HashMap<K, Vec<V>>
    where
        Self: Sized + Iterator<Item = (K, V)>,
        K: Hash + Eq,
    {
        let mut map = HashMap::new();

        for (key, val) in self {
            let vec: &mut Vec<_> = map.entry(key).or_default();
            vec.push(val);
        }

        map
    }
}

impl<T: Iterator> CollectGroupBy for T {}

/// An iterator which visits given range using selection sampling (Algorithm S).
pub struct SelectionSamplingIterator<I: Iterator> {
    processed: usize,
    needed: usize,
    size: usize,
    iterator: I,
    random: Arc<dyn Random + Send + Sync>,
}

impl<I: Iterator> SelectionSamplingIterator<I> {
    /// Creates a new instance of `SelectionSamplingIterator`.
    pub fn new(iterator: I, amount: usize, random: Arc<dyn Random + Send + Sync>) -> Self {
        assert!(amount > 0);
        Self {
            // NOTE relying on lower bound size hint!
            size: iterator.size_hint().0,
            processed: 0,
            needed: amount,
            iterator,
            random,
        }
    }
}

impl<I: Iterator> Iterator for SelectionSamplingIterator<I> {
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let left = if self.needed != 0 && self.size > self.processed {
                self.size - self.processed
            } else {
                return None;
            };

            let probability = self.needed as f64 / left as f64;

            self.processed += 1;
            let next = self.iterator.next();

            if next.is_none() || self.random.is_hit(probability) {
                self.needed -= 1;
                return next;
            }
        }
    }
}

/// Returns a new iterator which samples some range from existing one.
pub fn create_range_sampling_iter<I: Iterator>(
    iterator: I,
    sample_size: usize,
    random: &(dyn Random + Send + Sync),
) -> impl Iterator<Item = I::Item> {
    let iterator_size = iterator.size_hint().0 as f64;
    let sample_count = (iterator_size / sample_size as f64).max(1.) - 1.;
    let offset = random.uniform_int(0, sample_count as i32) as usize * sample_size;

    iterator.skip(offset).take(sample_size)
}

/// Provides way to search using selection sampling algorithm on iterator where elements have ordered
/// index values.
pub trait SelectionSamplingSearch: Iterator {
    /// Searches using selection sampling algorithm.
    fn sample_search<'a, T, R, FM, FI, FC>(
        self,
        sample_size: usize,
        random: Arc<dyn Random + Send + Sync>,
        mut map_fn: FM,
        index_fn: FI,
        compare_fn: FC,
    ) -> Option<R>
    where
        Self: Sized + Clone + Iterator<Item = T> + 'a,
        T: 'a,
        R: 'a,
        FM: FnMut(T) -> R,
        FI: Fn(&T) -> i32,
        FC: Fn(&R, &R) -> bool,
    {
        let last_idx = i32::MAX;
        let mut state = SelectionSamplingSearchState::<R>::default();

        loop {
            let best_idx = state.best.as_ref().map_or(-1, |(best_idx, _)| *best_idx);
            let skip = state.target_left as usize;
            let take = (state.target_right - state.target_left) as usize + 1;

            state.next_left = last_idx;
            state.next_right = state.next_right.min(last_idx);

            state = SelectionSamplingIterator::new(self.clone().skip(skip).take(take), sample_size, random.clone())
                .filter(|item| index_fn(item) != best_idx)
                .fold(state, |mut acc, item| {
                    let item_idx = index_fn(&item);
                    let item_mapped = map_fn(item);

                    if acc.best.as_ref().map_or(false, |(best_idx, _)| *best_idx == acc.target_left) {
                        acc.next_right = item_idx - 1;
                    }

                    if acc.best.as_ref().map_or(true, |(_, best)| compare_fn(&item_mapped, best)) {
                        acc.best = Some((item_idx, item_mapped));
                        acc.next_left = acc.target_left + 1
                    }

                    acc.target_left = item_idx;

                    acc
                });

            state.target_left = state.next_left;
            state.target_right = state.next_right;

            if state.target_left >= state.target_right {
                break;
            }
        }

        state.best.map(|(_, best)| best)
    }
}

impl<T: Iterator> SelectionSamplingSearch for T {}

#[derive(Debug)]
struct SelectionSamplingSearchState<T> {
    target_left: i32,
    target_right: i32,
    best: Option<(i32, T)>,
    next_left: i32,
    next_right: i32,
}

impl<T> Default for SelectionSamplingSearchState<T> {
    fn default() -> Self {
        Self { target_left: 0, target_right: i32::MAX, best: None, next_left: i32::MAX, next_right: i32::MAX }
    }
}