roaring 0.11.3

A better compressed bitset - pure Rust implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
use roaring::RoaringBitmap;

#[test]
fn next_range_basic() {
    let bm = RoaringBitmap::from([1, 2, 4, 5]);
    let mut iter = bm.iter();

    // First consecutive range: 1..=2
    assert_eq!(iter.next_range(), Some(1..=2));

    // Iterator should now point at 4
    assert_eq!(iter.next(), Some(4));

    // Second consecutive range: 5..=5 (single element)
    assert_eq!(iter.next_range(), Some(5..=5));

    // Iterator should now be exhausted
    assert_eq!(iter.next(), None);
    assert_eq!(iter.next_range(), None);
}

#[test]
fn next_range_back_basic() {
    let bm = RoaringBitmap::from([1, 2, 4, 5]);
    let mut iter = bm.iter();

    // Last consecutive range from back: 4..=5
    assert_eq!(iter.next_range_back(), Some(4..=5));

    // Iterator back should now point at 2
    assert_eq!(iter.next_back(), Some(2));

    // Previous consecutive range from back: 1..=1 (single element)
    assert_eq!(iter.next_range_back(), Some(1..=1));

    // Iterator should now be exhausted from back
    assert_eq!(iter.next_back(), None);
    assert_eq!(iter.next_range_back(), None);
}

#[test]
fn next_range_single_elements() {
    // All single-element ranges
    let bm = RoaringBitmap::from([1, 3, 5, 7]);
    let mut iter = bm.iter();

    assert_eq!(iter.next_range(), Some(1..=1));
    assert_eq!(iter.next(), Some(3));

    assert_eq!(iter.next_range(), Some(5..=5));
    assert_eq!(iter.next(), Some(7));

    assert_eq!(iter.next_range(), None);
    assert_eq!(iter.next(), None);
}

#[test]
fn next_range_long_consecutive() {
    // Long consecutive sequence
    let bm = RoaringBitmap::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
    let mut iter = bm.iter();

    // Should get the entire range
    assert_eq!(iter.next_range(), Some(1..=10));

    // Iterator should be exhausted after consuming the range
    assert_eq!(iter.next(), None);
    assert_eq!(iter.next_range(), None);
}

#[test]
fn next_range_partial_consumption() {
    let bm = RoaringBitmap::from([1, 2, 3, 4, 5, 10, 11, 12]);
    let mut iter = bm.iter();

    // Consume some elements first
    assert_eq!(iter.next(), Some(1));
    assert_eq!(iter.next(), Some(2));

    // Should get remaining range from current position
    assert_eq!(iter.next_range(), Some(3..=5));

    // Continue with next range
    assert_eq!(iter.next(), Some(10));
    assert_eq!(iter.next_range(), Some(11..=12));
}

#[test]
fn next_range_back_partial_consumption() {
    let bm = RoaringBitmap::from([1, 2, 3, 10, 11, 12]);
    let mut iter = bm.iter();

    // Consume some elements from back first
    assert_eq!(iter.next_back(), Some(12));
    assert_eq!(iter.next_back(), Some(11));

    // Should get remaining range from back position
    assert_eq!(iter.next_range_back(), Some(10..=10));

    // Continue with previous range
    assert_eq!(iter.next_back(), Some(3));
    assert_eq!(iter.next_range_back(), Some(1..=2));
}

#[test]
fn next_range_empty_bitmap() {
    let bm = RoaringBitmap::new();
    let mut iter = bm.iter();

    assert_eq!(iter.next_range(), None);
    assert_eq!(iter.next_range_back(), None);
}

#[test]
fn next_range_single_element_bitmap() {
    let bm = RoaringBitmap::from([42]);
    let mut iter = bm.iter();

    assert_eq!(iter.next_range(), Some(42..=42));
    assert_eq!(iter.next(), None);

    // Reset for back test
    let mut iter = bm.iter();
    assert_eq!(iter.next_range_back(), Some(42..=42));
    assert_eq!(iter.next_back(), None);
}

#[test]
fn next_range_mixed_operations() {
    let bm = RoaringBitmap::from([1, 2, 3, 10, 11, 12, 20]);
    let mut iter = bm.iter();

    // Mix forward and backward operations
    assert_eq!(iter.next(), Some(1));
    assert_eq!(iter.next_back(), Some(20));

    // Get remaining range from front (from current position 2)
    assert_eq!(iter.next_range(), Some(2..=3));

    // Get remaining range from back (should be 10..=12)
    assert_eq!(iter.next_range_back(), Some(10..=12));

    // Both ranges consumed, iterator should be empty
    assert_eq!(iter.next(), None);
    assert_eq!(iter.next_back(), None);
}

#[test]
fn next_range_multi_container() {
    // Test across container boundaries
    let bm = RoaringBitmap::from([1, 2, 0x1_0000, 0x1_0001, 0x1_0002]);
    let mut iter = bm.iter();

    // First container range
    assert_eq!(iter.next_range(), Some(1..=2));

    // Second container range
    assert_eq!(iter.next(), Some(0x1_0000));
    assert_eq!(iter.next_range(), Some(0x1_0001..=0x1_0002));

    assert_eq!(iter.next(), None);
}

#[test]
fn next_range_u32_max_boundary() {
    // Test behavior at u32::MAX boundary
    let bm = RoaringBitmap::from([u32::MAX - 2, u32::MAX - 1, u32::MAX]);
    let mut iter = bm.iter();

    // Should handle u32::MAX correctly with RangeInclusive
    assert_eq!(iter.next_range(), Some((u32::MAX - 2)..=u32::MAX));

    assert_eq!(iter.next(), None);
}

#[test]
fn next_range_advance_to_integration() {
    let bm = RoaringBitmap::from([1, 2, 3, 4, 5, 10, 11, 12, 13]);
    let mut iter = bm.iter();

    // Advance to middle of a consecutive range
    iter.advance_to(3);

    // Should get remaining part of the range
    assert_eq!(iter.next_range(), Some(3..=5));

    // Continue with next range
    assert_eq!(iter.next(), Some(10));
    assert_eq!(iter.next_range(), Some(11..=13));
}

#[test]
fn next_range_advance_back_to_integration() {
    let bm = RoaringBitmap::from([1, 2, 3, 4, 5, 10, 11, 12, 13]);
    let mut iter = bm.iter();

    // Advance back to middle of a consecutive range
    iter.advance_back_to(12);

    // Should get range from start to current back position
    assert_eq!(iter.next_range_back(), Some(10..=12));

    // Continue with previous range
    assert_eq!(iter.next_back(), Some(5));
    assert_eq!(iter.next_range_back(), Some(1..=4));
}

// Test IntoIter variants
#[test]
fn into_iter_next_range_basic() {
    let bm = RoaringBitmap::from([1, 2, 4, 5]);
    let mut iter = bm.into_iter();

    assert_eq!(iter.next_range(), Some(1..=2));
    assert_eq!(iter.next(), Some(4));
    assert_eq!(iter.next_range(), Some(5..=5));
}

#[test]
fn into_iter_next_range_back_basic() {
    let bm = RoaringBitmap::from([1, 2, 4, 5]);
    let mut iter = bm.into_iter();

    assert_eq!(iter.next_range_back(), Some(4..=5));
    assert_eq!(iter.next_back(), Some(2));
    assert_eq!(iter.next_range_back(), Some(1..=1));
}

#[test]
fn next_range_exhausted_iterator() {
    let bm = RoaringBitmap::from([1, 2, 3]);
    let mut iter = bm.iter();

    // Consume all elements
    iter.next();
    iter.next();
    iter.next();

    // Iterator should be exhausted
    assert_eq!(iter.next_range(), None);
    assert_eq!(iter.next_range_back(), None);
}

#[test]
fn next_range_overlapping_calls() {
    let bm = RoaringBitmap::from([1, 2, 3, 10, 11]);
    let mut iter = bm.iter();

    // Get first range
    assert_eq!(iter.next_range(), Some(1..=3));

    // Iterator advanced past first range, get second range
    assert_eq!(iter.next_range(), Some(10..=11));

    // No more ranges
    assert_eq!(iter.next_range(), None);
}

#[test]
fn next_range_very_sparse() {
    // Very sparse bitmap
    let bm = RoaringBitmap::from([0, 1000, 2000, 3000]);
    let mut iter = bm.iter();

    // Each element should be its own range
    assert_eq!(iter.next_range(), Some(0..=0));
    assert_eq!(iter.next(), Some(1000));

    assert_eq!(iter.next_range(), Some(2000..=2000));
    assert_eq!(iter.next(), Some(3000));

    assert_eq!(iter.next_range(), None);
}

#[test]
fn next_range_dense_bitmap() {
    // Dense bitmap with large consecutive ranges
    let mut bm = RoaringBitmap::new();
    // Add ranges: 0-99, 200-299, 500-599
    for i in 0..100 {
        bm.insert(i);
    }
    for i in 200..300 {
        bm.insert(i);
    }
    for i in 500..600 {
        bm.insert(i);
    }

    let mut iter = bm.iter();

    assert_eq!(iter.next_range(), Some(0..=99));
    assert_eq!(iter.next(), Some(200));

    assert_eq!(iter.next_range(), Some(201..=299));
    assert_eq!(iter.next(), Some(500));

    assert_eq!(iter.next_range(), Some(501..=599));
    assert_eq!(iter.next(), None);
}

#[test]
fn next_range_multi_container_range() {
    // Single element bitmap
    let mut bm = RoaringBitmap::new();
    bm.insert_range(0..=0x4_0000);
    let mut iter = bm.iter();

    assert_eq!(iter.next(), Some(0));
    assert_eq!(iter.next(), Some(1));
    assert_eq!(iter.next_range(), Some(2..=0x4_0000));

    assert_eq!(iter.next_range(), None);
    assert_eq!(iter.next(), None);
}

// Tests for bitmap store - these should trigger the todo!() implementations
#[test]
fn next_range_bitmap_store_forced() {
    // Create a sparse pattern that exceeds ARRAY_LIMIT but is inefficient as runs
    let mut bm = RoaringBitmap::new();

    // Add alternating ranges to create many gaps - inefficient as runs
    for i in (0..20000).step_by(4) {
        bm.insert(i); // bit at i
        bm.insert(i + 1); // bit at i+1
                          // gaps at i+2, i+3
    }

    // Force removal of run compression to ensure bitmap store
    bm.remove_run_compression();

    let mut iter = bm.iter();

    // First consecutive range should be 0..=1
    assert_eq!(iter.next_range(), Some(0..=1));

    // Iterator should now point at 4
    assert_eq!(iter.next(), Some(4));

    // Second consecutive range: 5..=5 (single element)
    assert_eq!(iter.next_range(), Some(5..=5));
}

#[test]
fn next_range_back_bitmap_store_forced() {
    // Create a sparse pattern that exceeds ARRAY_LIMIT but is inefficient as runs
    let mut bm = RoaringBitmap::new();

    // Add alternating ranges to create many gaps
    for i in (0..20000).step_by(4) {
        bm.insert(i);
        bm.insert(i + 1);
    }

    // Force removal of run compression
    bm.remove_run_compression();

    let mut iter = bm.iter();

    // Last consecutive range from back should be the last pair
    // The last elements should be 19996, 19997
    assert_eq!(iter.next_range_back(), Some(19996..=19997));
}

#[test]
fn next_range_bitmap_store_dense_with_gaps() {
    // Create a dense bitmap with strategic gaps to force bitmap store
    let mut bm = RoaringBitmap::new();

    // Add most elements but with regular gaps to make runs inefficient
    for i in 0..10000 {
        if i % 3 != 0 {
            // Skip every 3rd element
            bm.insert(i);
        }
    }

    // Force bitmap representation
    bm.remove_run_compression();

    let mut iter = bm.iter();

    // First consecutive range should be 1..=2
    assert_eq!(iter.next_range(), Some(1..=2));

    // Next element should be 4
    assert_eq!(iter.next(), Some(4));

    // Next range should be 5..=5
    assert_eq!(iter.next_range(), Some(5..=5));
}

#[test]
fn next_range_bitmap_store_partial_consumption() {
    // Create bitmap that forces bitmap store
    let mut bm = RoaringBitmap::new();

    // Add elements in groups of 2 with gaps
    for i in (1000..8000).step_by(3) {
        bm.insert(i);
        bm.insert(i + 1);
    }

    bm.remove_run_compression();

    let mut iter = bm.iter();

    // Consume first few elements
    assert_eq!(iter.next(), Some(1000));
    assert_eq!(iter.next(), Some(1001));

    // Should get next range starting at 1003
    assert_eq!(iter.next_range(), Some(1003..=1004));
}

#[test]
fn next_range_bitmap_store_mixed_operations() {
    let mut bm = RoaringBitmap::new();

    // Create pattern that forces bitmap store
    for i in (0..10000).step_by(3) {
        bm.insert(i);
        bm.insert(i + 1);
    }

    bm.remove_run_compression();

    // The pattern will be: 0,1 gap 3,4 gap 6,7 gap ... 9996,9997 gap 9999
    // Last iteration: i=9999, so we insert 9999 and 10000
    // But 10000 might be in a different container, so let's find the actual last element
    let last_element = bm.iter().next_back().unwrap();

    let mut iter = bm.iter();

    // Mix forward and backward operations
    assert_eq!(iter.next(), Some(0));
    assert_eq!(iter.next_back(), Some(last_element));

    // Get remaining range from front
    assert_eq!(iter.next_range(), Some(1..=1));

    // Continue to next range
    assert_eq!(iter.next(), Some(3));
    assert_eq!(iter.next_range(), Some(4..=4));
}

#[test]
fn next_range_bitmap_store_single_elements() {
    // Create very sparse bitmap that forces bitmap store
    let mut bm = RoaringBitmap::new();

    // Add individual elements spread far apart
    for i in (0..20000).step_by(5) {
        bm.insert(i);
    }

    bm.remove_run_compression();

    let mut iter = bm.iter();

    // Each element should be its own single-element range
    assert_eq!(iter.next_range(), Some(0..=0));
    assert_eq!(iter.next(), Some(5));
    assert_eq!(iter.next_range(), Some(10..=10));
    assert_eq!(iter.next(), Some(15));
    assert_eq!(iter.next_range(), Some(20..=20));
}

#[test]
fn next_range_bitmap_store_alternating_pattern() {
    // Create alternating pattern that's inefficient for run encoding
    let mut bm = RoaringBitmap::new();

    // Every other bit set in a large range
    for i in (0..10000).step_by(2) {
        bm.insert(i);
    }

    bm.remove_run_compression();

    let mut iter = bm.iter();

    // Each bit should be its own range due to alternating pattern
    assert_eq!(iter.next_range(), Some(0..=0));
    assert_eq!(iter.next(), Some(2));
    assert_eq!(iter.next_range(), Some(4..=4));
    assert_eq!(iter.next(), Some(6));
    assert_eq!(iter.next_range(), Some(8..=8));
}

#[test]
fn next_range_bitmap_store_with_small_clusters() {
    // Create small clusters of bits separated by gaps
    let mut bm = RoaringBitmap::new();

    // Add clusters of 3 bits separated by gaps of 5
    for base in (0..15000).step_by(8) {
        bm.insert(base);
        bm.insert(base + 1);
        bm.insert(base + 2);
        // gap of 5 (base+3, base+4, base+5, base+6, base+7)
    }

    bm.remove_run_compression();

    let mut iter = bm.iter();

    // First cluster: 0..=2
    assert_eq!(iter.next_range(), Some(0..=2));

    // Next cluster starts at 8
    assert_eq!(iter.next(), Some(8));
    assert_eq!(iter.next_range(), Some(9..=10));

    // Next cluster starts at 16
    assert_eq!(iter.next(), Some(16));
    assert_eq!(iter.next_range(), Some(17..=18));
}

#[test]
fn range_partial_consume() {
    let mut bitmap = RoaringBitmap::new();
    bitmap.insert_range(0..=0x3FFF);
    let mut iter = bitmap.iter();
    iter.next();
    assert_eq!(iter.next_range_back(), Some(1..=0x3FFF));
}

#[test]
fn range_with_initial_next() {
    let mut bitmap = RoaringBitmap::new();
    bitmap.insert_range(69311..=180090);
    let mut iter = bitmap.iter();
    assert_eq!(iter.next(), Some(69311));
    assert_eq!(iter.next_range_back(), Some(69312..=180090));
}

#[test]
fn range_with_gap() {
    let mut bitmap = RoaringBitmap::new();
    bitmap.insert_range(0x2_0000..=0x2_FFFF);
    bitmap.remove(0x2_1000);
    bitmap.remove_run_compression();
    let mut iter = bitmap.iter();
    assert_eq!(iter.next_range(), Some(0x2_0000..=0x2_0FFF));
    assert_eq!(iter.next(), Some(0x2_1001));
}

#[test]
fn range_back_after_next() {
    let mut bitmap = RoaringBitmap::new();
    bitmap.insert_range(0..=0x3_FFFF);
    bitmap.remove(0x0_3000);
    let mut iter = bitmap.iter();
    assert_eq!(iter.next(), Some(0));
    assert_eq!(iter.next_range_back(), Some(0x0_3001..=0x3_FFFF));
}