roaring 0.10.11

A better compressed bitset - pure Rust implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
use alloc::collections::{btree_map, BTreeMap};
use core::iter;
use core::ops::Add;

use super::util;
use crate::bitmap::IntoIter as IntoIter32;
use crate::bitmap::Iter as Iter32;
use crate::{NonSortedIntegers, RoaringBitmap, RoaringTreemap};

struct To64Iter<'a> {
    hi: u32,
    inner: Iter32<'a>,
}

impl To64Iter<'_> {
    fn advance_to(&mut self, n: u32) {
        self.inner.advance_to(n)
    }

    fn advance_back_to(&mut self, n: u32) {
        self.inner.advance_back_to(n)
    }
}

impl Iterator for To64Iter<'_> {
    type Item = u64;
    fn next(&mut self) -> Option<u64> {
        self.inner.next().map(|n| util::join(self.hi, n))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }

    #[inline]
    fn fold<B, F>(self, init: B, mut f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        self.inner.fold(init, move |b, lo| f(b, ((self.hi as u64) << 32) + (lo as u64)))
    }
}

impl DoubleEndedIterator for To64Iter<'_> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|n| util::join(self.hi, n))
    }

    #[inline]
    fn rfold<B, F>(self, init: B, mut f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        self.inner.rfold(init, move |b, lo| f(b, ((self.hi as u64) << 32) + (lo as u64)))
    }
}

fn to64iter(t: (u32, &RoaringBitmap)) -> To64Iter<'_> {
    To64Iter { hi: t.0, inner: t.1.iter() }
}

struct To64IntoIter {
    hi: u32,
    inner: IntoIter32,
}

impl Iterator for To64IntoIter {
    type Item = u64;
    fn next(&mut self) -> Option<u64> {
        self.inner.next().map(|n| util::join(self.hi, n))
    }

    #[inline]
    fn fold<B, F>(self, init: B, mut f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        self.inner.fold(init, move |b, lo| f(b, ((self.hi as u64) << 32) + (lo as u64)))
    }
}

impl DoubleEndedIterator for To64IntoIter {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|n| util::join(self.hi, n))
    }

    #[inline]
    fn rfold<B, F>(self, init: B, mut f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        self.inner.rfold(init, move |b, lo| f(b, ((self.hi as u64) << 32) + (lo as u64)))
    }
}

fn to64intoiter(t: (u32, RoaringBitmap)) -> To64IntoIter {
    To64IntoIter { hi: t.0, inner: t.1.into_iter() }
}

type InnerIntoIter = iter::FlatMap<
    btree_map::IntoIter<u32, RoaringBitmap>,
    To64IntoIter,
    fn((u32, RoaringBitmap)) -> To64IntoIter,
>;

/// An iterator for `RoaringTreemap`.
pub struct Iter<'a> {
    outer: BitmapIter<'a>,
    front: Option<To64Iter<'a>>,
    back: Option<To64Iter<'a>>,
}

/// An iterator for `RoaringTreemap`.
pub struct IntoIter {
    inner: InnerIntoIter,
    size_hint: u64,
}

impl Iter<'_> {
    fn new(map: &BTreeMap<u32, RoaringBitmap>) -> Iter {
        let outer = BitmapIter::new(map);
        Iter { outer, front: None, back: None }
    }

    /// Advance the iterator to the first position where the item has a value >= `n`
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringTreemap;
    /// use core::iter::FromIterator;
    ///
    /// let bitmap = (1..3).collect::<RoaringTreemap>();
    /// let mut iter = bitmap.iter();
    /// iter.advance_to(2);
    ///
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn advance_to(&mut self, n: u64) {
        let (key, index) = util::split(n);

        self.outer.advance_to(key);

        if self.front.is_none() {
            let Some(next) = self.outer.next() else {
                // if the current front iterator is empty or not yet initialized,
                // but the outer bitmap iterator is empty, then consume the back
                // iterator from the front if it is not also exhausted
                if let Some(ref mut back) = self.back {
                    back.advance_to(index);
                }
                return;
            };
            self.front = Some(to64iter(next));
        }

        if let Some(ref mut front) = self.front {
            front.advance_to(index);
        }
    }

    /// Advance the back of the iterator to the first position where the item has a value <= `n`
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringTreemap;
    /// use core::iter::FromIterator;
    ///
    /// let bitmap = (1..3).collect::<RoaringTreemap>();
    /// let mut iter = bitmap.iter();
    /// iter.advance_back_to(1);
    ///
    /// assert_eq!(iter.next_back(), Some(1));
    /// assert_eq!(iter.next_back(), None);
    /// ```
    pub fn advance_back_to(&mut self, n: u64) {
        let (key, index) = util::split(n);

        self.outer.advance_back_to(key);

        if self.back.is_none() {
            let Some(next_back) = self.outer.next_back() else {
                // if the current back iterator is empty or not yet initialized,
                // but the outer bitmap iterator is empty, then consume the front
                // iterator from the back if it is not also exhausted
                if let Some(ref mut front) = self.front {
                    front.advance_back_to(index);
                }
                return;
            };
            self.back = Some(to64iter(next_back));
        }

        if let Some(ref mut back) = self.back {
            back.advance_back_to(index);
        }
    }
}

impl IntoIter {
    fn new(map: BTreeMap<u32, RoaringBitmap>) -> IntoIter {
        let size_hint = map.values().map(|r| r.len()).sum();
        let i = map.into_iter().flat_map(to64intoiter as _);
        IntoIter { inner: i, size_hint }
    }
}

impl Iterator for Iter<'_> {
    type Item = u64;

    fn next(&mut self) -> Option<u64> {
        if let Some(ref mut front) = &mut self.front {
            if let Some(inner) = front.next() {
                return Some(inner);
            }
        }

        let Some(outer_next) = self.outer.next() else {
            // if the current front iterator is empty or not yet initialized,
            // but the outer bitmap iterator is empty, then consume the back
            // iterator from the front if it is not also exhausted
            if let Some(ref mut back) = &mut self.back {
                if let Some(next) = back.next() {
                    return Some(next);
                }
            }
            return None;
        };

        self.front = Some(to64iter(outer_next));
        self.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let front_size_hint = self.front.as_ref().map_or(0, |f| f.size_hint().0);
        let back_size_hint = self.back.as_ref().map_or(0, |b| b.size_hint().0);

        let size_hint = front_size_hint
            .saturating_add(back_size_hint)
            .saturating_add(self.outer.remaining() as usize);

        (size_hint, Some(size_hint))
    }

    #[inline]
    fn fold<B, F>(self, _init: B, _f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        todo!();
        // self.inner.fold(init, f)
    }
}

impl DoubleEndedIterator for Iter<'_> {
    fn next_back(&mut self) -> Option<Self::Item> {
        if let Some(ref mut back) = &mut self.back {
            if let Some(inner) = back.next_back() {
                return Some(inner);
            }
        }

        let Some(outer_next_back) = self.outer.next_back() else {
            // if the current back iterator is empty or not yet initialized,
            // but the outer bitmap iterator is empty, then consume the front
            // iterator from the back if it is not also exhausted
            if let Some(ref mut front) = &mut self.front {
                if let Some(next_back) = front.next_back() {
                    return Some(next_back);
                }
            }
            return None;
        };

        self.back = Some(to64iter(outer_next_back));
        self.next_back()
    }

    #[inline]
    fn rfold<Acc, Fold>(self, _init: Acc, _fold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        todo!();
        // self.inner.rfold(init, fold)
    }
}

#[cfg(target_pointer_width = "64")]
impl ExactSizeIterator for Iter<'_> {
    fn len(&self) -> usize {
        self.size_hint().0
    }
}

impl Iterator for IntoIter {
    type Item = u64;

    fn next(&mut self) -> Option<u64> {
        self.size_hint = self.size_hint.saturating_sub(1);
        self.inner.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.size_hint < usize::MAX as u64 {
            (self.size_hint as usize, Some(self.size_hint as usize))
        } else {
            (usize::MAX, None)
        }
    }

    #[inline]
    fn fold<B, F>(self, init: B, f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B,
    {
        self.inner.fold(init, f)
    }
}

impl DoubleEndedIterator for IntoIter {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.size_hint = self.size_hint.saturating_sub(1);
        self.inner.next_back()
    }

    #[inline]
    fn rfold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        self.inner.rfold(init, fold)
    }
}

#[cfg(target_pointer_width = "64")]
impl ExactSizeIterator for IntoIter {
    fn len(&self) -> usize {
        self.size_hint as usize
    }
}

impl RoaringTreemap {
    /// Iterator over each value stored in the RoaringTreemap, guarantees values are ordered by
    /// value.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringTreemap;
    /// use core::iter::FromIterator;
    ///
    /// let bitmap = (1..3).collect::<RoaringTreemap>();
    /// let mut iter = bitmap.iter();
    ///
    /// assert_eq!(iter.next(), Some(1));
    /// assert_eq!(iter.next(), Some(2));
    /// assert_eq!(iter.next(), None);
    /// ```
    pub fn iter(&self) -> Iter {
        Iter::new(&self.map)
    }

    /// Iterator over pairs of partition number and the corresponding RoaringBitmap.
    /// The partition number is defined by the 32 most significant bits of the bit index.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::{RoaringBitmap, RoaringTreemap};
    /// use core::iter::FromIterator;
    ///
    /// let original = (0..6000).collect::<RoaringTreemap>();
    /// let mut bitmaps = original.bitmaps();
    ///
    /// assert_eq!(bitmaps.next(), Some((0, &(0..6000).collect::<RoaringBitmap>())));
    /// assert_eq!(bitmaps.next(), None);
    /// ```
    pub fn bitmaps(&self) -> BitmapIter {
        BitmapIter::new(&self.map)
    }

    /// Construct a RoaringTreemap from an iterator of partition number and RoaringBitmap pairs.
    /// The partition number is defined by the 32 most significant bits of the bit index.
    /// Note that repeated partitions, if present, will replace previously set partitions.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringTreemap;
    /// use core::iter::FromIterator;
    ///
    /// let original = (0..6000).collect::<RoaringTreemap>();
    /// let clone = RoaringTreemap::from_bitmaps(original.bitmaps().map(|(p, b)| (p, b.clone())));
    ///
    /// assert_eq!(clone, original);
    /// ```
    pub fn from_bitmaps<I: IntoIterator<Item = (u32, RoaringBitmap)>>(iterator: I) -> Self {
        RoaringTreemap { map: iterator.into_iter().collect() }
    }
}

impl<'a> IntoIterator for &'a RoaringTreemap {
    type Item = u64;
    type IntoIter = Iter<'a>;

    fn into_iter(self) -> Iter<'a> {
        self.iter()
    }
}

impl IntoIterator for RoaringTreemap {
    type Item = u64;
    type IntoIter = IntoIter;

    fn into_iter(self) -> IntoIter {
        IntoIter::new(self.map)
    }
}

impl<const N: usize> From<[u64; N]> for RoaringTreemap {
    fn from(arr: [u64; N]) -> Self {
        RoaringTreemap::from_iter(arr)
    }
}

impl FromIterator<u64> for RoaringTreemap {
    fn from_iter<I: IntoIterator<Item = u64>>(iterator: I) -> RoaringTreemap {
        let mut rb = RoaringTreemap::new();
        rb.extend(iterator);
        rb
    }
}

impl<'a> FromIterator<&'a u64> for RoaringTreemap {
    fn from_iter<I: IntoIterator<Item = &'a u64>>(iterator: I) -> RoaringTreemap {
        let mut rb = RoaringTreemap::new();
        rb.extend(iterator);
        rb
    }
}

impl Extend<u64> for RoaringTreemap {
    fn extend<I: IntoIterator<Item = u64>>(&mut self, iterator: I) {
        for value in iterator {
            self.insert(value);
        }
    }
}

impl<'a> Extend<&'a u64> for RoaringTreemap {
    fn extend<I: IntoIterator<Item = &'a u64>>(&mut self, iterator: I) {
        for value in iterator {
            self.insert(*value);
        }
    }
}

impl RoaringTreemap {
    /// Create the set from a sorted iterator. Values must be sorted and deduplicated.
    ///
    /// The values of the iterator must be ordered and strictly greater than the greatest value
    /// in the set. If a value in the iterator doesn't satisfy this requirement, it is not added
    /// and the append operation is stopped.
    ///
    /// Returns `Ok` with the requested `RoaringTreemap`, `Err` with the number of elements
    /// we tried to append before an error occurred.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringTreemap;
    ///
    /// let mut rb = RoaringTreemap::from_sorted_iter(0..10).unwrap();
    ///
    /// assert!(rb.iter().eq(0..10));
    /// ```
    pub fn from_sorted_iter<I: IntoIterator<Item = u64>>(
        iterator: I,
    ) -> Result<RoaringTreemap, NonSortedIntegers> {
        let mut rt = RoaringTreemap::new();
        rt.append(iterator).map(|_| rt)
    }

    /// Extend the set with a sorted iterator.
    ///
    /// The values of the iterator must be ordered and strictly greater than the greatest value
    /// in the set. If a value in the iterator doesn't satisfy this requirement, it is not added
    /// and the append operation is stopped.
    ///
    /// Returns `Ok` with the number of elements appended to the set, `Err` with
    /// the number of elements we effectively appended before an error occurred.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringTreemap;
    ///
    /// let mut rb = RoaringTreemap::new();
    /// rb.append(0..10);
    ///
    /// assert!(rb.iter().eq(0..10));
    /// ```
    pub fn append<I: IntoIterator<Item = u64>>(
        &mut self,
        iterator: I,
    ) -> Result<u64, NonSortedIntegers> {
        let mut iterator = iterator.into_iter();
        let mut prev = match (iterator.next(), self.max()) {
            (None, _) => return Ok(0),
            (Some(first), Some(max)) if first <= max => {
                return Err(NonSortedIntegers { valid_until: 0 })
            }
            (Some(first), _) => first,
        };

        // It is now guaranteed that so long as the values of the iterator are
        // monotonically increasing they must also be the greatest in the set.

        self.push_unchecked(prev);

        let mut count = 1;
        for value in iterator {
            if value <= prev {
                return Err(NonSortedIntegers { valid_until: count });
            } else {
                self.push_unchecked(value);
                prev = value;
                count += 1;
            }
        }

        Ok(count)
    }
}

/// An iterator of `RoaringBitmap`s for `RoaringTreemap`.
pub struct BitmapIter<'a> {
    treemap: &'a BTreeMap<u32, RoaringBitmap>,
    range: btree_map::Range<'a, u32, RoaringBitmap>,
    latest_front_idx: Option<u32>,
    latest_back_idx: Option<u32>,
}

impl<'a> BitmapIter<'a> {
    fn new(treemap: &'a BTreeMap<u32, RoaringBitmap>) -> Self {
        let range = treemap.range(..);
        Self { treemap, range, latest_back_idx: None, latest_front_idx: None }
    }

    fn advance_to(&mut self, new_front_idx: u32) {
        match self.latest_back_idx {
            Some(latest_back_idx) => match self.latest_front_idx {
                Some(last_idx) if last_idx >= new_front_idx => {}
                _ => {
                    // if asked to advance to beyond the back iterator,
                    // update the self.range iterator to be empty
                    if new_front_idx >= latest_back_idx {
                        self.range = self.treemap.range(0..1);
                        self.range.next_back();
                    } else {
                        // otherwise shrink the remaining range from the front
                        self.range = self.treemap.range(new_front_idx..latest_back_idx);
                    }

                    // self.range = self.treemap.range(new_front_idx..latest_back_idx);
                }
            },
            None => match self.latest_front_idx {
                Some(latest_idx) if latest_idx >= new_front_idx => {}
                _ => {
                    self.range = self.treemap.range(new_front_idx..);
                }
            },
        }
    }

    fn advance_back_to(&mut self, new_back_idx: u32) {
        match self.latest_front_idx {
            Some(latest_front_idx) => match self.latest_back_idx {
                // do nothing if asked to advance back to a higher index than the back is already at
                Some(latest_back_idx) if latest_back_idx <= new_back_idx => {}
                _ => {
                    // if asked to advance back to beyond the front iterator,
                    // update the self.range iterator to be empty
                    if new_back_idx <= latest_front_idx {
                        self.range = self.treemap.range(0..1);
                        self.range.next_back();
                    } else {
                        // otherwise shrink the remaining range from the back
                        self.range = self.treemap.range((latest_front_idx + 1)..new_back_idx);
                    }
                }
            },
            None => match self.latest_back_idx {
                Some(latest_back_idx) if latest_back_idx <= new_back_idx => {}
                _ => {
                    self.range = self.treemap.range(..=new_back_idx);
                }
            },
        }
    }

    fn remaining(&self) -> u64 {
        let range = self.range.clone();
        range.fold(0, |acc, (_, bitmap)| acc.add(bitmap.len()))
    }
}

impl<'a> Iterator for BitmapIter<'a> {
    type Item = (u32, &'a RoaringBitmap);

    fn next(&mut self) -> Option<Self::Item> {
        match self.range.next().map(|(&p, b)| (p, b)) {
            None => {
                self.latest_front_idx = None;
                None
            }
            Some((next_idx, next_map)) => {
                self.latest_front_idx = Some(next_idx);
                Some((next_idx, next_map))
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.range.size_hint()
    }
}

impl FromIterator<(u32, RoaringBitmap)> for RoaringTreemap {
    fn from_iter<I: IntoIterator<Item = (u32, RoaringBitmap)>>(iterator: I) -> RoaringTreemap {
        Self::from_bitmaps(iterator)
    }
}

impl DoubleEndedIterator for BitmapIter<'_> {
    fn next_back(&mut self) -> Option<Self::Item> {
        match self.range.next_back().map(|(&p, b)| (p, b)) {
            None => {
                self.latest_back_idx = None;
                None
            }
            Some((next_back_idx, next_back_map)) => {
                self.latest_back_idx = Some(next_back_idx);
                Some((next_back_idx, next_back_map))
            }
        }
    }
}