roaring 0.10.11

A better compressed bitset - pure Rust implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
use core::borrow::Borrow;
use core::cmp::Ordering;
use core::fmt::{Display, Formatter};
use core::mem::size_of;
use core::ops::{BitAndAssign, BitOrAssign, BitXorAssign, RangeInclusive, SubAssign};

use super::ArrayStore;

#[cfg(not(feature = "std"))]
use alloc::boxed::Box;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

pub const BITMAP_LENGTH: usize = 1024;

#[derive(Clone, Eq, PartialEq)]
pub struct BitmapStore {
    len: u64,
    bits: Box<[u64; BITMAP_LENGTH]>,
}

impl BitmapStore {
    pub fn new() -> BitmapStore {
        BitmapStore { len: 0, bits: Box::new([0; BITMAP_LENGTH]) }
    }

    pub fn full() -> BitmapStore {
        BitmapStore { len: (BITMAP_LENGTH as u64) * 64, bits: Box::new([u64::MAX; BITMAP_LENGTH]) }
    }

    pub fn capacity(&self) -> usize {
        BITMAP_LENGTH * u64::BITS as usize
    }

    pub fn try_from(len: u64, bits: Box<[u64; BITMAP_LENGTH]>) -> Result<BitmapStore, Error> {
        let actual_len = bits.iter().map(|v| v.count_ones() as u64).sum();
        if len != actual_len {
            Err(Error { kind: ErrorKind::Cardinality { expected: len, actual: actual_len } })
        } else {
            Ok(BitmapStore { len, bits })
        }
    }

    pub fn from_lsb0_bytes_unchecked(bytes: &[u8], byte_offset: usize, bits_set: u64) -> Self {
        const BITMAP_BYTES: usize = BITMAP_LENGTH * size_of::<u64>();
        assert!(byte_offset.checked_add(bytes.len()).map_or(false, |sum| sum <= BITMAP_BYTES));

        // If we know we're writing the full bitmap, we can avoid the initial memset to 0
        let mut bits = if bytes.len() == BITMAP_BYTES {
            debug_assert_eq!(byte_offset, 0); // Must be true from the above assert

            // Safety: We've checked that the length is correct, and we use an unaligned load in case
            //         the bytes are not 8 byte aligned.
            // The optimizer can see through this, and avoid the double copy to copy directly into
            // the allocated box from bytes with memcpy
            let bytes_as_words =
                unsafe { bytes.as_ptr().cast::<[u64; BITMAP_LENGTH]>().read_unaligned() };
            Box::new(bytes_as_words)
        } else {
            let mut bits = Box::new([0u64; BITMAP_LENGTH]);
            // Safety: It's safe to reinterpret u64s as u8s because u8 has less alignment requirements,
            // and has no padding/uninitialized data.
            let dst = unsafe {
                core::slice::from_raw_parts_mut(bits.as_mut_ptr().cast::<u8>(), BITMAP_BYTES)
            };
            let dst = &mut dst[byte_offset..][..bytes.len()];
            dst.copy_from_slice(bytes);
            bits
        };

        if !cfg!(target_endian = "little") {
            // Convert all words we touched (even partially) to little-endian
            let start_word = byte_offset / size_of::<u64>();
            let end_word = (byte_offset + bytes.len() + (size_of::<u64>() - 1)) / size_of::<u64>();

            // The 0th byte is the least significant byte, so we've written the bytes in little-endian
            for word in &mut bits[start_word..end_word] {
                *word = u64::from_le(*word);
            }
        }

        Self::from_unchecked(bits_set, bits)
    }

    ///
    /// Create a new BitmapStore from a given len and bits array
    /// It is up to the caller to ensure len == cardinality of bits
    /// Favor `try_from` for cases in which this invariants should be checked
    ///
    /// # Panics
    ///
    /// When debug_assertions are enabled and the above invariant is not met
    pub fn from_unchecked(len: u64, bits: Box<[u64; BITMAP_LENGTH]>) -> BitmapStore {
        if cfg!(debug_assertions) {
            BitmapStore::try_from(len, bits).unwrap()
        } else {
            BitmapStore { len, bits }
        }
    }

    #[inline]
    pub fn insert(&mut self, index: u16) -> bool {
        let (key, bit) = (key(index), bit(index));
        let old_w = self.bits[key];
        let new_w = old_w | (1 << bit);
        let inserted = (old_w ^ new_w) >> bit; // 1 or 0
        self.bits[key] = new_w;
        self.len += inserted;
        inserted != 0
    }

    pub fn insert_range(&mut self, range: RangeInclusive<u16>) -> u64 {
        let start = *range.start();
        let end = *range.end();

        let (start_key, start_bit) = (key(start), bit(start));
        let (end_key, end_bit) = (key(end), bit(end));

        // MSB > start_bit > end_bit > LSB
        if start_key == end_key {
            // Set the end_bit -> LSB to 1
            let mut mask = if end_bit == 63 { u64::MAX } else { (1 << (end_bit + 1)) - 1 };
            // Set MSB -> start_bit to 1
            mask &= !((1 << start_bit) - 1);

            let existed = (self.bits[start_key] & mask).count_ones();
            self.bits[start_key] |= mask;

            let inserted = u64::from(end - start + 1) - u64::from(existed);
            self.len += inserted;
            return inserted;
        }

        // Mask off the left-most bits (MSB -> start_bit)
        let mask = !((1 << start_bit) - 1);

        // Keep track of the number of bits that were already set to
        // return how many new bits were set later
        let mut existed = (self.bits[start_key] & mask).count_ones();

        self.bits[start_key] |= mask;

        // Set the full blocks, tracking the number of set bits
        for i in (start_key + 1)..end_key {
            existed += self.bits[i].count_ones();
            self.bits[i] = u64::MAX;
        }

        // Set the end bits in the last chunk (MSB -> end_bit)
        let mask = if end_bit == 63 { u64::MAX } else { (1 << (end_bit + 1)) - 1 };
        existed += (self.bits[end_key] & mask).count_ones();
        self.bits[end_key] |= mask;

        let inserted = end as u64 - start as u64 + 1 - existed as u64;
        self.len += inserted;
        inserted
    }

    pub fn push(&mut self, index: u16) -> bool {
        if self.max().map_or(true, |max| max < index) {
            self.insert(index);
            true
        } else {
            false
        }
    }

    ///
    /// Pushes `index` at the end of the store.
    /// It is up to the caller to have validated index > self.max()
    ///
    /// # Panics
    ///
    /// If debug_assertions enabled and index is > self.max()
    pub(crate) fn push_unchecked(&mut self, index: u16) {
        if cfg!(debug_assertions) {
            if let Some(max) = self.max() {
                assert!(index > max, "store max >= index")
            }
        }
        self.insert(index);
    }

    pub fn remove(&mut self, index: u16) -> bool {
        let (key, bit) = (key(index), bit(index));
        let old_w = self.bits[key];
        let new_w = old_w & !(1 << bit);
        let removed = (old_w ^ new_w) >> bit; // 0 or 1
        self.bits[key] = new_w;
        self.len -= removed;
        removed != 0
    }

    pub fn remove_range(&mut self, range: RangeInclusive<u16>) -> u64 {
        let start = *range.start();
        let end = *range.end();

        let (start_key, start_bit) = (key(start), bit(start));
        let (end_key, end_bit) = (key(end), bit(end));

        if start_key == end_key {
            let mask = (u64::MAX << start_bit) & (u64::MAX >> (63 - end_bit));
            let removed = (self.bits[start_key] & mask).count_ones();
            self.bits[start_key] &= !mask;
            let removed = u64::from(removed);
            self.len -= removed;
            return removed;
        }

        let mut removed = 0;
        // start key bits
        removed += (self.bits[start_key] & (u64::MAX << start_bit)).count_ones();
        self.bits[start_key] &= !(u64::MAX << start_bit);
        // counts bits in between
        for word in &self.bits[start_key + 1..end_key] {
            removed += word.count_ones();
            // When popcnt is available zeroing in this loop is faster,
            // but we opt to perform reasonably on most cpus by zeroing after.
            // By doing that the compiler uses simd to count ones.
        }
        // do zeroing outside the loop
        for word in &mut self.bits[start_key + 1..end_key] {
            *word = 0;
        }
        // end key bits
        removed += (self.bits[end_key] & (u64::MAX >> (63 - end_bit))).count_ones();
        self.bits[end_key] &= !(u64::MAX >> (63 - end_bit));
        let removed = u64::from(removed);
        self.len -= removed;
        removed
    }

    pub fn contains(&self, index: u16) -> bool {
        self.bits[key(index)] & (1 << bit(index)) != 0
    }

    pub fn contains_range(&self, range: RangeInclusive<u16>) -> bool {
        let start = *range.start();
        let end = *range.end();
        if self.len() < u64::from(end - start) + 1 {
            return false;
        }

        let (start_i, start_bit) = (key(start), bit(start));
        let (end_i, end_bit) = (key(end), bit(end));

        // Create a mask to exclude the first `start_bit` bits
        // e.g. if we start at bit index 1, this will create a mask which includes all but the bit
        // at index 0.
        let start_mask = !((1 << start_bit) - 1);
        // We want to create a mask which includes the end_bit, so we create a mask of
        // `end_bit + 1` bits. `end_bit` will be between [0, 63], so we create a mask including
        // between [1, 64] bits. For example, if the last bit is the 0th bit, we make a mask with
        // only the 0th bit set (one bit).
        let end_mask = (!0) >> (64 - (end_bit + 1));

        match &self.bits[start_i..=end_i] {
            [] => unreachable!(),
            &[word] => word & (start_mask & end_mask) == (start_mask & end_mask),
            &[first, ref rest @ .., last] => {
                (first & start_mask) == start_mask
                    && rest.iter().all(|&word| word == !0)
                    && (last & end_mask) == end_mask
            }
        }
    }

    pub fn is_disjoint(&self, other: &BitmapStore) -> bool {
        self.bits.iter().zip(other.bits.iter()).all(|(&i1, &i2)| (i1 & i2) == 0)
    }

    pub fn is_subset(&self, other: &Self) -> bool {
        self.bits.iter().zip(other.bits.iter()).all(|(&i1, &i2)| (i1 & i2) == i1)
    }

    pub(crate) fn to_array_store(&self) -> ArrayStore {
        let mut vec = Vec::with_capacity(self.len as usize);
        for (index, mut bit) in self.bits.iter().cloned().enumerate() {
            while bit != 0 {
                vec.push((u64::trailing_zeros(bit) + (64 * index as u32)) as u16);
                bit &= bit - 1;
            }
        }
        ArrayStore::from_vec_unchecked(vec)
    }

    pub fn len(&self) -> u64 {
        self.len
    }

    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    pub fn min(&self) -> Option<u16> {
        self.bits
            .iter()
            .enumerate()
            .find(|&(_, &bit)| bit != 0)
            .map(|(index, bit)| (index * 64 + (bit.trailing_zeros() as usize)) as u16)
    }

    #[inline]
    pub fn max(&self) -> Option<u16> {
        self.bits
            .iter()
            .enumerate()
            .rev()
            .find(|&(_, &bit)| bit != 0)
            .map(|(index, bit)| (index * 64 + (63 - bit.leading_zeros() as usize)) as u16)
    }

    pub fn rank(&self, index: u16) -> u64 {
        let (key, bit) = (key(index), bit(index));

        self.bits[..key].iter().map(|v| v.count_ones() as u64).sum::<u64>()
            + (self.bits[key] << (63 - bit)).count_ones() as u64
    }

    pub fn select(&self, n: u16) -> Option<u16> {
        let mut n = n as u64;

        for (key, value) in self.bits.iter().cloned().enumerate() {
            let len = value.count_ones() as u64;
            if n < len {
                let index = select(value, n);
                return Some((64 * key as u64 + index) as u16);
            }
            n -= len;
        }

        None
    }

    pub fn intersection_len_bitmap(&self, other: &BitmapStore) -> u64 {
        self.bits.iter().zip(other.bits.iter()).map(|(&a, &b)| (a & b).count_ones() as u64).sum()
    }

    pub(crate) fn intersection_len_array(&self, other: &ArrayStore) -> u64 {
        other
            .iter()
            .map(|&index| {
                let (key, bit) = (key(index), bit(index));
                let old_w = self.bits[key];
                let new_w = old_w & (1 << bit);
                new_w >> bit
            })
            .sum::<u64>()
    }

    pub fn iter(&self) -> BitmapIter<&[u64; BITMAP_LENGTH]> {
        BitmapIter::new(&self.bits)
    }

    pub fn into_iter(self) -> BitmapIter<Box<[u64; BITMAP_LENGTH]>> {
        BitmapIter::new(self.bits)
    }

    #[cfg(feature = "std")]
    pub fn as_array(&self) -> &[u64; BITMAP_LENGTH] {
        &self.bits
    }

    pub fn clear(&mut self) {
        self.bits.fill(0);
        self.len = 0;
    }

    /// Set N bits that are currently 1 bit from the lower bit to 0.
    pub fn remove_smallest(&mut self, mut clear_bits: u64) {
        if self.len() < clear_bits {
            self.clear();
            return;
        }
        self.len -= clear_bits;
        for word in self.bits.iter_mut() {
            let count = word.count_ones() as u64;
            if clear_bits < count {
                for _ in 0..clear_bits {
                    *word = *word & (*word - 1);
                }
                return;
            }
            *word = 0;
            clear_bits -= count;
            if clear_bits == 0 {
                return;
            }
        }
    }

    /// Set N bits that are currently 1 bit from the lower bit to 0.
    pub fn remove_biggest(&mut self, mut clear_bits: u64) {
        if self.len() < clear_bits {
            self.clear();
            return;
        }
        self.len -= clear_bits;
        for word in self.bits.iter_mut().rev() {
            let count = word.count_ones() as u64;
            if clear_bits < count {
                for _ in 0..clear_bits {
                    *word &= !(1 << (63 - word.leading_zeros()));
                }
                return;
            }
            *word = 0;
            clear_bits -= count;
            if clear_bits == 0 {
                return;
            }
        }
    }
}

// this can be done in 3 instructions on x86-64 with bmi2 with: tzcnt(pdep(1 << rank, value))
// if n > value.count_ones() this method returns 0
fn select(mut value: u64, n: u64) -> u64 {
    // reset n of the least significant bits
    for _ in 0..n {
        value &= value - 1;
    }
    value.trailing_zeros() as u64
}

impl Default for BitmapStore {
    fn default() -> Self {
        BitmapStore::new()
    }
}

#[derive(Debug)]
pub struct Error {
    kind: ErrorKind,
}

#[derive(Debug)]
pub enum ErrorKind {
    Cardinality { expected: u64, actual: u64 },
}

impl Display for Error {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        match self.kind {
            ErrorKind::Cardinality { expected, actual } => {
                write!(f, "Expected cardinality was {expected} but was {actual}")
            }
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}

#[derive(Clone)]
pub struct BitmapIter<B: Borrow<[u64; BITMAP_LENGTH]>> {
    key: u16,
    value: u64,
    key_back: u16,
    // If key_back <= key, current back value is actually in `value`
    value_back: u64,
    bits: B,
}

impl<B: Borrow<[u64; BITMAP_LENGTH]>> BitmapIter<B> {
    fn new(bits: B) -> BitmapIter<B> {
        BitmapIter {
            key: 0,
            value: bits.borrow()[0],
            key_back: BITMAP_LENGTH as u16 - 1,
            value_back: bits.borrow()[BITMAP_LENGTH - 1],
            bits,
        }
    }

    /// Advance the iterator to the first value greater than or equal to `n`.
    pub(crate) fn advance_to(&mut self, index: u16) {
        let new_key = key(index) as u16;
        let value = match new_key.cmp(&self.key) {
            Ordering::Less => return,
            Ordering::Equal => self.value,
            Ordering::Greater => {
                let bits = self.bits.borrow();
                let cmp = new_key.cmp(&self.key_back);
                // Match arms can be reordered, this ordering is perf sensitive
                if cmp == Ordering::Less {
                    // new_key is > self.key, < self.key_back, so it must be in bounds
                    unsafe { *bits.get_unchecked(new_key as usize) }
                } else if cmp == Ordering::Equal {
                    self.value_back
                } else {
                    self.value_back = 0;
                    return;
                }
            }
        };
        let bit = bit(index);
        let low_bits = (1 << bit) - 1;

        self.key = new_key;
        self.value = value & !low_bits;
    }

    /// Advance the back of iterator to the first value less than or equal to `n`.
    pub(crate) fn advance_back_to(&mut self, index: u16) {
        let new_key = key(index) as u16;
        let (value, dst) = match new_key.cmp(&self.key_back) {
            Ordering::Greater => return,
            Ordering::Equal => {
                let dst =
                    if self.key_back <= self.key { &mut self.value } else { &mut self.value_back };
                (*dst, dst)
            }
            Ordering::Less => {
                let bits = self.bits.borrow();
                let cmp = new_key.cmp(&self.key);
                // Match arms can be reordered, this ordering is perf sensitive
                if cmp == Ordering::Greater {
                    // new_key is > self.key, < self.key_back, so it must be in bounds
                    let value = unsafe { *bits.get_unchecked(new_key as usize) };
                    (value, &mut self.value_back)
                } else if cmp == Ordering::Equal {
                    (self.value, &mut self.value)
                } else {
                    (0, &mut self.value)
                }
            }
        };
        let bit = bit(index);
        let low_bits = u64::MAX >> (64 - bit - 1);

        self.key_back = new_key;
        *dst = value & low_bits;
    }
}

impl<B: Borrow<[u64; BITMAP_LENGTH]>> Iterator for BitmapIter<B> {
    type Item = u16;

    fn next(&mut self) -> Option<u16> {
        if self.value == 0 {
            'get_val: {
                if self.key >= self.key_back {
                    return None;
                }
                for key in self.key + 1..self.key_back {
                    self.value = unsafe { *self.bits.borrow().get_unchecked(key as usize) };
                    if self.value != 0 {
                        self.key = key;
                        break 'get_val;
                    }
                }
                self.key = self.key_back;
                self.value = self.value_back;
                if self.value == 0 {
                    return None;
                }
            }
        }
        let index = self.value.trailing_zeros() as u16;
        self.value &= self.value - 1;
        Some(64 * self.key + index)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let mut len: u32 = self.value.count_ones();
        if self.key < self.key_back {
            for v in &self.bits.borrow()[self.key as usize + 1..self.key_back as usize] {
                len += v.count_ones();
            }
            len += self.value_back.count_ones();
        }
        (len as usize, Some(len as usize))
    }

    fn count(self) -> usize
    where
        Self: Sized,
    {
        self.len()
    }
}

impl<B: Borrow<[u64; BITMAP_LENGTH]>> DoubleEndedIterator for BitmapIter<B> {
    fn next_back(&mut self) -> Option<Self::Item> {
        loop {
            let value =
                if self.key_back <= self.key { &mut self.value } else { &mut self.value_back };
            if *value == 0 {
                if self.key_back <= self.key {
                    return None;
                }
                self.key_back -= 1;
                self.value_back =
                    unsafe { *self.bits.borrow().get_unchecked(self.key_back as usize) };
                continue;
            }
            let index_from_left = value.leading_zeros() as u16;
            let index = 63 - index_from_left;
            *value &= !(1 << index);
            return Some(64 * self.key_back + index);
        }
    }
}

impl<B: Borrow<[u64; BITMAP_LENGTH]>> ExactSizeIterator for BitmapIter<B> {}

#[inline]
pub fn key(index: u16) -> usize {
    index as usize / 64
}

#[inline]
pub fn bit(index: u16) -> usize {
    index as usize % 64
}

#[inline]
fn op_bitmaps(bits1: &mut BitmapStore, bits2: &BitmapStore, op: impl Fn(&mut u64, u64)) {
    bits1.len = 0;
    for (index1, &index2) in bits1.bits.iter_mut().zip(bits2.bits.iter()) {
        op(index1, index2);
        bits1.len += index1.count_ones() as u64;
    }
}

impl BitOrAssign<&Self> for BitmapStore {
    fn bitor_assign(&mut self, rhs: &Self) {
        op_bitmaps(self, rhs, BitOrAssign::bitor_assign);
    }
}

impl BitOrAssign<&ArrayStore> for BitmapStore {
    fn bitor_assign(&mut self, rhs: &ArrayStore) {
        for &index in rhs.iter() {
            let (key, bit) = (key(index), bit(index));
            let old_w = self.bits[key];
            let new_w = old_w | (1 << bit);
            self.len += (old_w ^ new_w) >> bit;
            self.bits[key] = new_w;
        }
    }
}

impl BitAndAssign<&Self> for BitmapStore {
    fn bitand_assign(&mut self, rhs: &Self) {
        op_bitmaps(self, rhs, BitAndAssign::bitand_assign);
    }
}

impl SubAssign<&Self> for BitmapStore {
    #[allow(clippy::suspicious_op_assign_impl)]
    fn sub_assign(&mut self, rhs: &Self) {
        op_bitmaps(self, rhs, |l, r| *l &= !r);
    }
}

impl SubAssign<&ArrayStore> for BitmapStore {
    #[allow(clippy::suspicious_op_assign_impl)]
    fn sub_assign(&mut self, rhs: &ArrayStore) {
        for &index in rhs.iter() {
            let (key, bit) = (key(index), bit(index));
            let old_w = self.bits[key];
            let new_w = old_w & !(1 << bit);
            self.len -= (old_w ^ new_w) >> bit;
            self.bits[key] = new_w;
        }
    }
}

impl BitXorAssign<&Self> for BitmapStore {
    fn bitxor_assign(&mut self, rhs: &Self) {
        op_bitmaps(self, rhs, BitXorAssign::bitxor_assign);
    }
}

impl BitXorAssign<&ArrayStore> for BitmapStore {
    fn bitxor_assign(&mut self, rhs: &ArrayStore) {
        let mut len = self.len as i64;
        for &index in rhs.iter() {
            let (key, bit) = (key(index), bit(index));
            let old_w = self.bits[key];
            let new_w = old_w ^ (1 << bit);
            len += 1 - 2 * (((1 << bit) & old_w) >> bit) as i64; // +1 or -1
            self.bits[key] = new_w;
        }
        self.len = len as u64;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_bitmap_remove_smallest() {
        let mut store = BitmapStore::new();
        let range = RangeInclusive::new(1, 3);
        store.insert_range(range);
        let range_second = RangeInclusive::new(5, 65535);
        // store.bits[0] = 0b1111111111111111111111111111111111111111111111111111111111101110
        store.insert_range(range_second);
        store.remove_smallest(2);
        assert_eq!(
            store.bits[0],
            0b1111111111111111111111111111111111111111111111111111111111101000
        );
    }

    #[test]
    fn test_bitmap_remove_biggest() {
        let mut store = BitmapStore::new();
        let range = RangeInclusive::new(1, 3);
        store.insert_range(range);
        let range_second = RangeInclusive::new(5, 65535);
        // store.bits[1023] = 0b1111111111111111111111111111111111111111111111111111111111111111
        store.insert_range(range_second);
        store.remove_biggest(2);
        assert_eq!(
            store.bits[1023],
            0b11111111111111111111111111111111111111111111111111111111111111
        );
    }
}