roaring 0.10.10

A better compressed bitset - pure Rust implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
use crate::bitmap::container::{Container, ARRAY_LIMIT};
use crate::bitmap::store::{ArrayStore, BitmapStore, Store, BITMAP_LENGTH};
use crate::RoaringBitmap;
use bytemuck::cast_slice_mut;
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use core::convert::Infallible;
use core::mem::size_of;
use core::ops::RangeInclusive;
use std::error::Error;
use std::io;

pub const SERIAL_COOKIE_NO_RUNCONTAINER: u32 = 12346;
pub const SERIAL_COOKIE: u16 = 12347;
pub const NO_OFFSET_THRESHOLD: usize = 4;

// Sizes of header structures
pub const DESCRIPTION_BYTES: usize = 4;
pub const OFFSET_BYTES: usize = 4;

impl RoaringBitmap {
    /// Return the size in bytes of the serialized output.
    /// This is compatible with the official C/C++, Java and Go implementations.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringBitmap;
    ///
    /// let rb1: RoaringBitmap = (1..4).collect();
    /// let mut bytes = Vec::with_capacity(rb1.serialized_size());
    /// rb1.serialize_into(&mut bytes).unwrap();
    /// let rb2 = RoaringBitmap::deserialize_from(&bytes[..]).unwrap();
    ///
    /// assert_eq!(rb1, rb2);
    /// ```
    pub fn serialized_size(&self) -> usize {
        let container_sizes: usize = self
            .containers
            .iter()
            .map(|container| match container.store {
                Store::Array(ref values) => 8 + values.len() as usize * 2,
                Store::Bitmap(..) => 8 + 8 * 1024,
            })
            .sum();

        // header + container sizes
        8 + container_sizes
    }

    /// Creates a `RoaringBitmap` from a byte slice, interpreting the bytes as a bitmap with a specified offset.
    ///
    /// # Arguments
    ///
    /// - `offset: u32` - The starting position in the bitmap where the byte slice will be applied, specified in bits.
    ///                   This means that if `offset` is `n`, the first byte in the slice will correspond to the `n`th bit(0-indexed) in the bitmap.
    /// - `bytes: &[u8]` - The byte slice containing the bitmap data. The bytes are interpreted in "Least-Significant-First" bit order.
    ///
    /// # Interpretation of `bytes`
    ///
    /// The `bytes` slice is interpreted in "Least-Significant-First" bit order. Each byte is read from least significant bit (LSB) to most significant bit (MSB).
    /// For example, the byte `0b00000101` represents the bits `1, 0, 1, 0, 0, 0, 0, 0` in that order (see Examples section).
    ///
    ///
    /// # Panics
    ///
    /// This function will panic if `bytes.len() + offset` is greater than 2^32.
    ///
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringBitmap;
    ///
    /// let bytes = [0b00000101, 0b00000010, 0b00000000, 0b10000000];
    /// //             ^^^^^^^^    ^^^^^^^^    ^^^^^^^^    ^^^^^^^^
    /// //             76543210          98
    /// let rb = RoaringBitmap::from_lsb0_bytes(0, &bytes);
    /// assert!(rb.contains(0));
    /// assert!(!rb.contains(1));
    /// assert!(rb.contains(2));
    /// assert!(rb.contains(9));
    /// assert!(rb.contains(31));
    ///
    /// let rb = RoaringBitmap::from_lsb0_bytes(8, &bytes);
    /// assert!(rb.contains(8));
    /// assert!(!rb.contains(9));
    /// assert!(rb.contains(10));
    /// assert!(rb.contains(17));
    /// assert!(rb.contains(39));
    ///
    /// let rb = RoaringBitmap::from_lsb0_bytes(3, &bytes);
    /// assert!(rb.contains(3));
    /// assert!(!rb.contains(4));
    /// assert!(rb.contains(5));
    /// assert!(rb.contains(12));
    /// assert!(rb.contains(34));
    /// ```
    pub fn from_lsb0_bytes(offset: u32, mut bytes: &[u8]) -> RoaringBitmap {
        fn shift_bytes(bytes: &[u8], amount: usize) -> Vec<u8> {
            let mut result = Vec::with_capacity(bytes.len() + 1);
            let mut carry = 0u8;

            for &byte in bytes {
                let shifted = (byte << amount) | carry;
                carry = byte >> (8 - amount);
                result.push(shifted);
            }

            if carry != 0 {
                result.push(carry);
            }

            result
        }
        if offset % 8 != 0 {
            let shift = offset as usize % 8;
            let shifted_bytes = shift_bytes(bytes, shift);
            return RoaringBitmap::from_lsb0_bytes(offset - shift as u32, &shifted_bytes);
        }

        if bytes.is_empty() {
            return RoaringBitmap::new();
        }

        // Using inclusive range avoids overflow: the max exclusive value is 2^32 (u32::MAX + 1).
        let end_bit_inc = u32::try_from(bytes.len())
            .ok()
            .and_then(|len_bytes| len_bytes.checked_mul(8))
            // `bytes` is non-empty, so len_bits is > 0
            .and_then(|len_bits| offset.checked_add(len_bits - 1))
            .expect("offset + bytes.len() must be <= 2^32");

        // offsets are in bytes
        let (mut start_container, start_offset) =
            (offset as usize >> 16, (offset as usize % 0x1_0000) / 8);
        let (end_container_inc, end_offset) =
            (end_bit_inc as usize >> 16, (end_bit_inc as usize % 0x1_0000 + 1) / 8);

        let n_containers_needed = end_container_inc + 1 - start_container;
        let mut containers = Vec::with_capacity(n_containers_needed);

        // Handle a partial first container
        if start_offset != 0 {
            let end_byte = if end_container_inc == start_container {
                end_offset
            } else {
                BITMAP_LENGTH * size_of::<u64>()
            };

            let (src, rest) = bytes.split_at(end_byte - start_offset);
            bytes = rest;

            if let Some(container) =
                Container::from_lsb0_bytes(start_container as u16, src, start_offset)
            {
                containers.push(container);
            }

            start_container += 1;
        }

        // Handle all full containers
        for full_container_key in start_container..end_container_inc {
            let (src, rest) = bytes.split_at(BITMAP_LENGTH * size_of::<u64>());
            bytes = rest;

            if let Some(container) = Container::from_lsb0_bytes(full_container_key as u16, src, 0) {
                containers.push(container);
            }
        }

        // Handle a last container
        if !bytes.is_empty() {
            if let Some(container) = Container::from_lsb0_bytes(end_container_inc as u16, bytes, 0)
            {
                containers.push(container);
            }
        }

        RoaringBitmap { containers }
    }

    /// Serialize this bitmap into [the standard Roaring on-disk format][format].
    /// This is compatible with the official C/C++, Java and Go implementations.
    ///
    /// [format]: https://github.com/RoaringBitmap/RoaringFormatSpec
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringBitmap;
    ///
    /// let rb1: RoaringBitmap = (1..4).collect();
    /// let mut bytes = vec![];
    /// rb1.serialize_into(&mut bytes).unwrap();
    /// let rb2 = RoaringBitmap::deserialize_from(&bytes[..]).unwrap();
    ///
    /// assert_eq!(rb1, rb2);
    /// ```
    pub fn serialize_into<W: io::Write>(&self, mut writer: W) -> io::Result<()> {
        writer.write_u32::<LittleEndian>(SERIAL_COOKIE_NO_RUNCONTAINER)?;
        writer.write_u32::<LittleEndian>(self.containers.len() as u32)?;

        for container in &self.containers {
            writer.write_u16::<LittleEndian>(container.key)?;
            writer.write_u16::<LittleEndian>((container.len() - 1) as u16)?;
        }

        let mut offset = 8 + 8 * self.containers.len() as u32;
        for container in &self.containers {
            writer.write_u32::<LittleEndian>(offset)?;
            match container.store {
                Store::Array(ref values) => {
                    offset += values.len() as u32 * 2;
                }
                Store::Bitmap(..) => {
                    offset += 8 * 1024;
                }
            }
        }

        for container in &self.containers {
            match container.store {
                Store::Array(ref values) => {
                    for &value in values.iter() {
                        writer.write_u16::<LittleEndian>(value)?;
                    }
                }
                Store::Bitmap(ref bits) => {
                    for &value in bits.as_array() {
                        writer.write_u64::<LittleEndian>(value)?;
                    }
                }
            }
        }

        Ok(())
    }

    /// Deserialize a bitmap into memory from [the standard Roaring on-disk
    /// format][format]. This is compatible with the official C/C++, Java and
    /// Go implementations. This method checks that all of the internal values
    /// are valid. If deserializing from a trusted source consider
    /// [RoaringBitmap::deserialize_unchecked_from]
    ///
    /// [format]: https://github.com/RoaringBitmap/RoaringFormatSpec
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringBitmap;
    ///
    /// let rb1: RoaringBitmap = (1..4).collect();
    /// let mut bytes = vec![];
    /// rb1.serialize_into(&mut bytes).unwrap();
    /// let rb2 = RoaringBitmap::deserialize_from(&bytes[..]).unwrap();
    ///
    /// assert_eq!(rb1, rb2);
    /// ```
    pub fn deserialize_from<R: io::Read>(reader: R) -> io::Result<RoaringBitmap> {
        RoaringBitmap::deserialize_from_impl(reader, ArrayStore::try_from, BitmapStore::try_from)
    }

    /// Deserialize a bitmap into memory from [the standard Roaring on-disk
    /// format][format]. This is compatible with the official C/C++, Java and
    /// Go implementations. This method is memory safe but will not check if
    /// the data is a valid bitmap.
    ///
    /// [format]: https://github.com/RoaringBitmap/RoaringFormatSpec
    ///
    /// # Examples
    ///
    /// ```rust
    /// use roaring::RoaringBitmap;
    ///
    /// let rb1: RoaringBitmap = (1..4).collect();
    /// let mut bytes = vec![];
    /// rb1.serialize_into(&mut bytes).unwrap();
    /// let rb2 = RoaringBitmap::deserialize_unchecked_from(&bytes[..]).unwrap();
    ///
    /// assert_eq!(rb1, rb2);
    /// ```
    pub fn deserialize_unchecked_from<R: io::Read>(reader: R) -> io::Result<RoaringBitmap> {
        RoaringBitmap::deserialize_from_impl::<R, _, Infallible, _, Infallible>(
            reader,
            |values| Ok(ArrayStore::from_vec_unchecked(values)),
            |len, values| Ok(BitmapStore::from_unchecked(len, values)),
        )
    }

    fn deserialize_from_impl<R, A, AErr, B, BErr>(
        mut reader: R,
        a: A,
        b: B,
    ) -> io::Result<RoaringBitmap>
    where
        R: io::Read,
        A: Fn(Vec<u16>) -> Result<ArrayStore, AErr>,
        AErr: Error + Send + Sync + 'static,
        B: Fn(u64, Box<[u64; 1024]>) -> Result<BitmapStore, BErr>,
        BErr: Error + Send + Sync + 'static,
    {
        // First read the cookie to determine which version of the format we are reading
        let (size, has_offsets, has_run_containers) = {
            let cookie = reader.read_u32::<LittleEndian>()?;
            if cookie == SERIAL_COOKIE_NO_RUNCONTAINER {
                (reader.read_u32::<LittleEndian>()? as usize, true, false)
            } else if (cookie as u16) == SERIAL_COOKIE {
                let size = ((cookie >> 16) + 1) as usize;
                (size, size >= NO_OFFSET_THRESHOLD, true)
            } else {
                return Err(io::Error::new(io::ErrorKind::Other, "unknown cookie value"));
            }
        };

        // Read the run container bitmap if necessary
        let run_container_bitmap = if has_run_containers {
            let mut bitmap = vec![0u8; (size + 7) / 8];
            reader.read_exact(&mut bitmap)?;
            Some(bitmap)
        } else {
            None
        };

        if size > u16::MAX as usize + 1 {
            return Err(io::Error::new(io::ErrorKind::Other, "size is greater than supported"));
        }

        // Read the container descriptions
        let mut description_bytes = vec![0u8; size * DESCRIPTION_BYTES];
        reader.read_exact(&mut description_bytes)?;
        let mut description_bytes = &description_bytes[..];

        if has_offsets {
            let mut offsets = vec![0u8; size * OFFSET_BYTES];
            reader.read_exact(&mut offsets)?;
            drop(offsets); // Not useful when deserializing into memory
        }

        let mut containers = Vec::with_capacity(size);

        // Read each container
        for i in 0..size {
            let key = description_bytes.read_u16::<LittleEndian>()?;
            let cardinality = u64::from(description_bytes.read_u16::<LittleEndian>()?) + 1;

            // If the run container bitmap is present, check if this container is a run container
            let is_run_container =
                run_container_bitmap.as_ref().map_or(false, |bm| bm[i / 8] & (1 << (i % 8)) != 0);

            let store = if is_run_container {
                let runs = reader.read_u16::<LittleEndian>()?;
                let mut intervals = vec![[0, 0]; runs as usize];
                reader.read_exact(cast_slice_mut(&mut intervals))?;
                intervals.iter_mut().for_each(|[s, len]| {
                    *s = u16::from_le(*s);
                    *len = u16::from_le(*len);
                });

                let cardinality = intervals.iter().map(|[_, len]| *len as usize).sum();
                let mut store = Store::with_capacity(cardinality);
                intervals.into_iter().try_for_each(|[s, len]| -> Result<(), io::ErrorKind> {
                    let end = s.checked_add(len).ok_or(io::ErrorKind::InvalidData)?;
                    store.insert_range(RangeInclusive::new(s, end));
                    Ok(())
                })?;
                store
            } else if cardinality <= ARRAY_LIMIT {
                let mut values = vec![0; cardinality as usize];
                reader.read_exact(cast_slice_mut(&mut values))?;
                values.iter_mut().for_each(|n| *n = u16::from_le(*n));
                let array = a(values).map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
                Store::Array(array)
            } else {
                let mut values = Box::new([0; BITMAP_LENGTH]);
                reader.read_exact(cast_slice_mut(&mut values[..]))?;
                values.iter_mut().for_each(|n| *n = u64::from_le(*n));
                let bitmap = b(cardinality, values)
                    .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
                Store::Bitmap(bitmap)
            };

            containers.push(Container { key, store });
        }

        Ok(RoaringBitmap { containers })
    }
}

#[cfg(test)]
mod test {
    use crate::{bitmap::store::BITMAP_LENGTH, RoaringBitmap};
    use proptest::prelude::*;

    proptest! {
        #[test]
        fn test_serialization(
            bitmap in RoaringBitmap::arbitrary(),
        ) {
            let mut buffer = Vec::new();
            bitmap.serialize_into(&mut buffer).unwrap();
            prop_assert_eq!(bitmap, RoaringBitmap::deserialize_from(buffer.as_slice()).unwrap());
        }
    }

    #[test]
    fn test_from_lsb0_bytes() {
        const CONTAINER_OFFSET: u32 = u64::BITS * BITMAP_LENGTH as u32;
        const CONTAINER_OFFSET_IN_BYTES: u32 = CONTAINER_OFFSET / 8;
        let mut bytes = vec![0xff; CONTAINER_OFFSET_IN_BYTES as usize];
        bytes.extend([0x00; CONTAINER_OFFSET_IN_BYTES as usize]);
        bytes.extend([0b00000001, 0b00000010, 0b00000011, 0b00000100]);

        let offset = 32;
        let rb = RoaringBitmap::from_lsb0_bytes(offset, &bytes);
        for i in 0..offset {
            assert!(!rb.contains(i), "{i} should not be in the bitmap");
        }
        for i in offset..offset + CONTAINER_OFFSET {
            assert!(rb.contains(i), "{i} should be in the bitmap");
        }
        for i in offset + CONTAINER_OFFSET..offset + CONTAINER_OFFSET * 2 {
            assert!(!rb.contains(i), "{i} should not be in the bitmap");
        }
        for bit in [0, 9, 16, 17, 26] {
            let i = bit + offset + CONTAINER_OFFSET * 2;
            assert!(rb.contains(i), "{i} should be in the bitmap");
        }

        assert_eq!(rb.len(), CONTAINER_OFFSET as u64 + 5);

        // Ensure the empty container is not created
        let mut bytes = vec![0x00u8; CONTAINER_OFFSET_IN_BYTES as usize];
        bytes.extend([0xff]);
        let rb = RoaringBitmap::from_lsb0_bytes(0, &bytes);
        assert_eq!(rb.min(), Some(CONTAINER_OFFSET));

        let rb = RoaringBitmap::from_lsb0_bytes(8, &bytes);
        assert_eq!(rb.min(), Some(CONTAINER_OFFSET + 8));

        // Ensure we can set the last byte in an array container
        let bytes = [0x80];
        let rb = RoaringBitmap::from_lsb0_bytes(0xFFFFFFF8, &bytes);
        assert_eq!(rb.len(), 1);
        assert!(rb.contains(u32::MAX));

        // Ensure we can set the last byte in a bitmap container
        let bytes = vec![0xFF; 0x1_0000 / 8];
        let rb = RoaringBitmap::from_lsb0_bytes(0xFFFF0000, &bytes);
        assert_eq!(rb.len(), 0x1_0000);
        assert!(rb.contains(u32::MAX));
    }

    #[test]
    fn test_from_lsb0_bytes_not_multiple_of_8() {
        const CONTAINER_OFFSET: u32 = u64::BITS * BITMAP_LENGTH as u32;
        const CONTAINER_OFFSET_IN_BYTES: u32 = CONTAINER_OFFSET / 8;

        let mut bytes = vec![0b0101_1001];
        bytes.extend([0x00; CONTAINER_OFFSET_IN_BYTES as usize]);
        bytes.extend([0b00000001, 0b00000010, 0b00000011, 0b00000100]);

        let mut indices = vec![0, 3, 4, 6];
        indices.extend([0, 9, 16, 17, 26].map(|i| 8 + CONTAINER_OFFSET + i));

        for offset in 0..8 {
            let rb = RoaringBitmap::from_lsb0_bytes(offset, &bytes);
            for i in indices.iter().map(|&i| i + offset) {
                assert!(rb.contains(i), "{i} should be in the bitmap");
            }
        }
    }

    #[test]
    #[should_panic(expected = "<= 2^32")]
    fn test_from_lsb0_bytes_overflow() {
        let bytes = [0x01, 0x01];
        RoaringBitmap::from_lsb0_bytes(u32::MAX - 7, &bytes);
    }

    #[test]
    fn test_deserialize_overflow_s_plus_len() {
        let data = vec![59, 48, 0, 0, 255, 130, 254, 59, 48, 2, 0, 41, 255, 255, 166, 197, 4, 0, 2];
        let res = RoaringBitmap::deserialize_from(data.as_slice());
        assert!(res.is_err());
    }
}