rmt
Random Matrix Theory primitives for spectral analysis and signal detection. Implements Marchenko-Pastur law, Wigner semicircle law, and eigenvalue spacing statistics.
Dual-licensed under MIT or Apache-2.0.
use ;
// Marchenko-Pastur: eigenvalue density of sample covariance
let ratio = 0.5; // p/n
let density = marchenko_pastur_density;
// Wigner semicircle: symmetric random matrix eigenvalues
let density = wigner_semicircle_density;
// Sample a Wishart matrix
let wishart = sample_wishart;
Functions
| Function | Purpose |
|---|---|
marchenko_pastur_density |
MP law density |
marchenko_pastur_support |
MP support bounds |
wigner_semicircle_density |
Wigner law density |
sample_wishart |
Sample X^T X |
sample_goe |
Gaussian Orthogonal Ensemble |
level_spacing_ratios |
Eigenvalue spacing statistics |
empirical_spectral_density |
Histogram-based density |
stieltjes_transform |
m(z) transform |
Why RMT?
- Covariance matrix eigenvalues follow MP distribution
- Neural network weight spectra reveal training dynamics
- Distinguish signal from noise in PCA