1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
// Copyright 2022 Risc0, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Support for the rank 4 extension field of the base field.
use core::ops;
use bytemuck::{Pod, Zeroable};
use rand::Rng;
use super::{
    fp::{Fp, FpMul, P},
    Random,
};
const BETA: Fp = Fp::new(11);
const NBETA: Fp = Fp::new(P - 11);
/// The size of the extension field in elements, 4 in this case.
pub const EXT_SIZE: usize = 4;
/// Instances of `Fp4` are elements of a finite field `F_p^4`. They are
/// represented as elements of `F_p[X] / (X^4 - 11)`. Basically, this is a *big*
/// finite field (about `2^128` elements), which is used when the security of
/// various operations depends on the size of the field. It has the field
/// `Fp` as a subfield, which means operations by the two are compatable, which
/// is important. The irreducible polynomial was choosen to be the most simple
/// possible one, `x^4 - B`, where `11` is the smallest `B` which makes the
/// polynomial irreducable.
#[derive(Clone, Copy, Debug, Default, Eq, PartialEq, PartialOrd, Zeroable, Pod)]
#[repr(transparent)]
pub struct Fp4([Fp; EXT_SIZE]);
impl Fp4 {
    /// Explicitly construct an Fp4 from parts.
    pub fn new(x0: Fp, x1: Fp, x2: Fp, x3: Fp) -> Self {
        Self([x0, x1, x2, x3])
    }
    /// Create a [Fp4] from a [Fp].
    pub fn from_fp(x: Fp) -> Self {
        Self([x, Fp::new(0), Fp::new(0), Fp::new(0)])
    }
    /// Create a [Fp4] from a raw integer.
    pub fn from_u32(x0: u32) -> Self {
        Self([Fp::new(x0), Fp::new(0), Fp::new(0), Fp::new(0)])
    }
    /// Returns the value zero.
    pub fn zero() -> Self {
        Self::from_u32(0)
    }
    /// Returns the value one.
    pub fn one() -> Self {
        Self::from_u32(1)
    }
    /// Returns the constant portion of a [Fp].
    pub fn const_part(self) -> Fp {
        self.0[0]
    }
    /// Returns the elements of a [Fp].
    pub fn elems(&self) -> &[Fp] {
        &self.0
    }
    /// Raise a [Fp4] to a power of `n`.
    pub fn pow(self, n: usize) -> Self {
        let mut n = n;
        let mut tot = Fp4::from(1);
        let mut x = self;
        while n != 0 {
            if n % 2 == 1 {
                tot *= x;
            }
            n = n / 2;
            x *= x;
        }
        tot
    }
    /// Compute the multiplicative inverse of an `Fp4`.
    pub fn inv(self) -> Self {
        let a = &self.0;
        // Compute the multiplicative inverse by looking at `Fp4` as a composite field
        // and using the same basic methods used to invert complex numbers. We imagine
        // that initially we have a numerator of `1`, and a denominator of `a`.
        // `out = 1 / a`; We set `a'` to be a with the first and third components
        // negated. We then multiply the numerator and the denominator by `a'`,
        // producing `out = a' / (a * a')`. By construction `(a * a')` has `0`s
        // in its first and third elements. We call this number, `b` and compute
        // it as follows.
        let mut b0 = a[0] * a[0] + BETA * (a[1] * (a[3] + a[3]) - a[2] * a[2]);
        let mut b2 = a[0] * (a[2] + a[2]) - a[1] * a[1] + BETA * (a[3] * a[3]);
        // Now, we make `b'` by inverting `b2`. When we muliply both sizes by `b'`, we
        // get `out = (a' * b') / (b * b')`.  But by construction `b * b'` is in
        // fact an element of `Fp`, call it `c`.
        let c = b0 * b0 + BETA * b2 * b2;
        // But we can now invert `C` direcly, and multiply by `a' * b'`:
        // `out = a' * b' * inv(c)`
        let ic = c.inv();
        // Note: if c == 0 (really should only happen if in == 0), our 'safe' version of
        // inverse results in ic == 0, and thus out = 0, so we have the same 'safe'
        // behavior for Fp4.  Oh, and since we want to multiply everything by ic, it's
        // slightly faster to pre-multiply the two parts of b by ic (2 multiplies
        // instead of 4).
        b0 *= ic;
        b2 *= ic;
        Fp4([
            a[0] * b0 + BETA * a[2] * b2,
            -a[1] * b0 + NBETA * a[3] * b2,
            -a[0] * b2 + a[2] * b0,
            a[1] * b2 - a[3] * b0,
        ])
    }
}
impl FpMul for Fp4 {
    fn fp_mul(self, x: Fp) -> Self {
        self * x
    }
}
impl Random for Fp4 {
    /// Generate a random field element uniformly.
    fn random<R: Rng>(rng: &mut R) -> Self {
        Self([
            Fp::random(rng),
            Fp::random(rng),
            Fp::random(rng),
            Fp::random(rng),
        ])
    }
}
impl ops::Add for Fp4 {
    type Output = Self;
    fn add(self, rhs: Self) -> Self {
        let mut lhs = self;
        lhs += rhs;
        lhs
    }
}
impl ops::AddAssign for Fp4 {
    fn add_assign(&mut self, rhs: Self) {
        for i in 0..self.0.len() {
            self.0[i] += rhs.0[i];
        }
    }
}
impl ops::Sub for Fp4 {
    type Output = Self;
    fn sub(self, rhs: Self) -> Self {
        let mut lhs = self;
        lhs -= rhs;
        lhs
    }
}
impl ops::SubAssign for Fp4 {
    fn sub_assign(&mut self, rhs: Self) {
        for i in 0..self.0.len() {
            self.0[i] -= rhs.0[i];
        }
    }
}
/// Implement the simple multiplication case by the subfield Fp.
impl ops::MulAssign<Fp> for Fp4 {
    fn mul_assign(&mut self, rhs: Fp) {
        for i in 0..self.0.len() {
            self.0[i] *= rhs;
        }
    }
}
impl ops::Mul<Fp> for Fp4 {
    type Output = Self;
    fn mul(self, rhs: Fp) -> Self {
        let mut lhs = self;
        lhs *= rhs;
        lhs
    }
}
impl ops::Mul<Fp4> for Fp {
    type Output = Fp4;
    fn mul(self, rhs: Fp4) -> Fp4 {
        rhs * self
    }
}
// Now we get to the interesting case of multiplication. Basically, multiply
// out the polynomial representations, and then reduce module `x^4 - B`, which
// means powers >= 4 get shifted back 4 and multiplied by `-beta`. We could
// write this as a double loops with some `if`s and hope it gets unrolled
// properly, but it's small enough to just hand write.
impl ops::MulAssign for Fp4 {
    fn mul_assign(&mut self, rhs: Self) {
        // Rename the element arrays to something small for readability.
        let a = &self.0;
        let b = &rhs.0;
        self.0 = [
            a[0] * b[0] + NBETA * (a[1] * b[3] + a[2] * b[2] + a[3] * b[1]),
            a[0] * b[1] + a[1] * b[0] + NBETA * (a[2] * b[3] + a[3] * b[2]),
            a[0] * b[2] + a[1] * b[1] + a[2] * b[0] + NBETA * (a[3] * b[3]),
            a[0] * b[3] + a[1] * b[2] + a[2] * b[1] + a[3] * b[0],
        ];
    }
}
impl ops::Mul for Fp4 {
    type Output = Fp4;
    fn mul(self, rhs: Fp4) -> Fp4 {
        let mut lhs = self;
        lhs *= rhs;
        lhs
    }
}
impl ops::Neg for Fp4 {
    type Output = Self;
    fn neg(self) -> Self {
        Fp4::default() - self
    }
}
impl From<u32> for Fp4 {
    fn from(x: u32) -> Self {
        Self([Fp::from(x), Fp::default(), Fp::default(), Fp::default()])
    }
}
impl From<Fp> for Fp4 {
    fn from(x: Fp) -> Self {
        Self([x, Fp::default(), Fp::default(), Fp::default()])
    }
}
#[cfg(test)]
mod tests {
    use super::Fp4;
    use super::Random;
    use rand::SeedableRng;
    #[test]
    fn isa_field() {
        let mut rng = rand::rngs::SmallRng::seed_from_u64(2);
        // Pick random sets of 3 elements of Fp4, and verify they meet the requirements
        // of a field.
        for _ in 0..1_000 {
            let a = Fp4::random(&mut rng);
            let b = Fp4::random(&mut rng);
            let c = Fp4::random(&mut rng);
            // Addition + multiplication commute
            assert_eq!(a + b, b + a);
            assert_eq!(a * b, b * a);
            // Addition + multiplication are associative
            assert_eq!(a + (b + c), (a + b) + c);
            assert_eq!(a * (b * c), (a * b) * c);
            // Distributive property
            assert_eq!(a * (b + c), a * b + a * c);
            // Inverses
            if a != Fp4::default() {
                assert_eq!(a.inv() * a, Fp4::from(1));
            }
            assert_eq!(Fp4::default() - a, -a);
            assert_eq!(a + (-a), Fp4::default());
        }
    }
}