ring 0.13.3

Safe, fast, small crypto using Rust.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Multi-precision integers.
//!
//! # Modular Arithmetic.
//!
//! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some
//! modulus *m*. We work in finite commutative rings instead of finite fields
//! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains
//! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a
//! finite field.
//!
//! In some calculations we need to deal with multiple rings at once. For
//! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and
//! ℤ/qℤ. Types and functions dealing with such rings are all parameterized
//! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by
//! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows
//! the "unit" pattern described in [Static checking of units in Servo]; `Elem`,
//! and `Modulus` are analogous to `geom::Length`, and `super::N` and
//! `super::signing::{P, QQ, Q}` are analogous to `Mm` and `Inch`.
//!
//! `Elem` also uses the static unit checking pattern to statically track the
//! Montgomery factors that need to be canceled out in each value using it's
//! `E` parameter.
//!
//! [Static checking of units in Servo]:
//!     https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/

#![allow(box_pointers)]

use {bits, bssl, c, error, limb, untrusted};
use arithmetic::montgomery::*;
use core;
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
use std;

#[cfg(any(test, feature = "rsa_signing"))]
use constant_time;

pub unsafe trait Prime {}

pub trait IsOne {
    fn is_one(&self) -> bool;
}

pub struct Width<M> {
    num_limbs: usize,

    /// The modulus *m* that the width originated from.
    m: PhantomData<M>,
}

/// All `BoxedLimbs<M>` are stored in the same number of limbs.
struct BoxedLimbs<M> {
    limbs: std::boxed::Box<[limb::Limb]>,

    /// The modulus *m* that determines the size of `limbx`.
    m: PhantomData<M>,
}

impl<M> Deref for BoxedLimbs<M> {
    type Target = [limb::Limb];
    #[inline]
    fn deref(&self) -> &Self::Target {
        &self.limbs
    }
}

impl<M> DerefMut for BoxedLimbs<M> {
    #[inline]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.limbs
    }
}

// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone`.
impl<M> Clone for BoxedLimbs<M> {
    fn clone(&self) -> Self {
        Self {
            limbs: self.limbs.clone(),
            m: self.m.clone(),
        }
    }
}

impl<M> BoxedLimbs<M> {
    fn positive_minimal_width_from_be_bytes(input: untrusted::Input)
                                            -> Result<Self, error::Unspecified> {
        // Reject leading zeros. Also reject the value zero ([0]) because zero
        // isn't positive.
        if untrusted::Reader::new(input).peek(0) {
            return Err(error::Unspecified);
        }
        let num_limbs = (input.len() + limb::LIMB_BYTES - 1) / limb::LIMB_BYTES;
        let mut r = Self::zero(Width { num_limbs, m: PhantomData });
        limb::parse_big_endian_and_pad_consttime(input, &mut r)?;
        Ok(r)
    }

    #[cfg(feature = "rsa_signing")]
    fn minimal_width_from_unpadded(limbs: &[limb::Limb]) -> Self {
        debug_assert_ne!(limbs.last(), Some(&0));
        use std::borrow::ToOwned;
        Self {
            limbs: limbs.to_owned().into_boxed_slice(),
            m: PhantomData,
        }
    }

    fn from_be_bytes_padded_less_than(input: untrusted::Input, m: &Modulus<M>)
                                      -> Result<Self, error::Unspecified> {
        let mut r = Self::zero(m.width());
        limb::parse_big_endian_and_pad_consttime(input, &mut r)?;
        if limb::limbs_less_than_limbs_consttime(&r, &m.limbs) !=
            limb::LimbMask::True {
            return Err(error::Unspecified);
        }
        Ok(r)
    }

    #[inline]
    fn is_zero(&self) -> bool {
        limb::limbs_are_zero_constant_time(&self.limbs) == limb::LimbMask::True
    }

    fn zero(width: Width<M>) -> Self {
        use std::borrow::ToOwned;
        Self {
            limbs: vec![0; width.num_limbs].to_owned().into_boxed_slice(),
            m: PhantomData,
        }
    }

    fn width(&self) -> Width<M> {
        Width {
            num_limbs: self.limbs.len(),
            m: PhantomData,
        }
    }
}

/// A modulus *s* that is smaller than another modulus *l* so every element of
/// ℤ/sℤ is also an element of ℤ/lℤ.
pub unsafe trait SmallerModulus<L> {}

/// A modulus *s* where s < l < 2*s for the given larger modulus *l*. This is
/// the precondition for reduction by conditional subtraction,
/// `elem_reduce_once()`.
pub unsafe trait SlightlySmallerModulus<L>: SmallerModulus<L> {}

/// A modulus *s* where √l <= s < l for the given larger modulus *l*. This is
/// the precondition for the more general Montgomery reduction from ℤ/lℤ to
/// ℤ/sℤ.
pub unsafe trait NotMuchSmallerModulus<L>: SmallerModulus<L> {}

pub const MODULUS_MAX_LIMBS: usize = 8192 / limb::LIMB_BITS;

/// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed
/// for efficient Montgomery multiplication modulo *m*. The value must be odd
/// and larger than 2. The larger-than-1 requirement is imposed, at least, by
/// the modular inversion code.
pub struct Modulus<M> {
    limbs: BoxedLimbs<M>, // Also `value >= 3`.

    // n0 * N == -1 (mod r).
    //
    // r == 2**(N0_LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This
    // ensures that we can do integer division by |r| by simply ignoring
    // `N0_LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by
    // just looking at the lowest `N0_LIMBS_USED` limbs. This is what makes
    // Montgomery multiplication efficient.
    //
    // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
    // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
    // multi-limb Montgomery multiplication of a * b (mod n), given the
    // unreduced product t == a * b, we repeatedly calculate:
    //
    //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph).
    //    t2 := t1*n0*n
    //    t3 := t + t2
    //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|.
    //
    // In the last step, it would only make sense to ignore the lowest limb of
    // |t3| if it were zero. The middle steps ensure that this is the case:
    //
    //                            t3 ==  0 (mod r)
    //                        t + t2 ==  0 (mod r)
    //                   t + t1*n0*n ==  0 (mod r)
    //                       t1*n0*n == -t (mod r)
    //                        t*n0*n == -t (mod r)
    //                          n0*n == -1 (mod r)
    //                            n0 == -1/n (mod r)
    //
    // Thus, in each iteration of the loop, we multiply by the constant factor
    // n0, the negative inverse of n (mod r). */
    //
    // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the
    // ones that don't, we could use a shorter `R` value and use faster `Limb`
    // calculations instead of double-precision `u64` calculations.
    n0: N0,
}

impl core::fmt::Debug for Modulus<super::N> {
    fn fmt(&self, fmt: &mut ::core::fmt::Formatter)
           -> Result<(), ::core::fmt::Error> {
        fmt.debug_struct("Modulus")
            // TODO: Print modulus value.
            .finish()
    }
}

impl<M> Modulus<M> {
    pub fn from_be_bytes_with_bit_length(input: untrusted::Input)
        -> Result<(Self, bits::BitLength), error::Unspecified>
    {
        let limbs = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?;
        let bits = minimal_limbs_bit_length(&limbs);
        Ok((Self::from_boxed_limbs(limbs)?, bits))
    }

    #[cfg(feature = "rsa_signing")]
    pub fn from(n: Nonnegative) -> Result<Self, error::Unspecified> {
        let limbs = BoxedLimbs {
            limbs: n.limbs.into_boxed_slice(),
            m: PhantomData,
        };
        Self::from_boxed_limbs(limbs)
    }

    fn from_boxed_limbs(n: BoxedLimbs<M>) -> Result<Self, error::Unspecified> {
        if n.len() > MODULUS_MAX_LIMBS {
            return Err(error::Unspecified);
        }
        Result::from(unsafe {
            GFp_bn_mul_mont_check_num_limbs(n.len())
        })?;
        if limb::limbs_are_even_constant_time(&n) != limb::LimbMask::False {
            return Err(error::Unspecified)
        }
        if limb::limbs_less_than_limb_constant_time(&n, 3) != limb::LimbMask::False {
            return Err(error::Unspecified);
        }

        // n_mod_r = n % r. As explained in the documentation for `n0`, this is
        // done by taking the lowest `N0_LIMBS_USED` limbs of `n`.
        let n0 = {
            // XXX: u64::from isn't guaranteed to be constant time.
            let mut n_mod_r: u64 = u64::from(n[0]);

            if N0_LIMBS_USED == 2 {
                // XXX: If we use `<< limb::LIMB_BITS` here then 64-bit builds
                // fail to compile because of `deny(exceeding_bitshifts)`.
                debug_assert_eq!(limb::LIMB_BITS, 32);
                n_mod_r |= u64::from(n[1]) << 32;
            }
            unsafe { GFp_bn_neg_inv_mod_r_u64(n_mod_r) }
        };

        Ok(Modulus {
            limbs: n,
            n0: n0_from_u64(n0),
        })
    }

    #[inline]
    fn width(&self) -> Width<M> { self.limbs.width() }

    pub fn zero<E>(&self) -> Elem<M, E> {
        Elem {
            limbs: BoxedLimbs::zero(self.width()),
            encoding: PhantomData,
        }
    }

    // TODO: Get rid of this
    #[cfg(feature = "rsa_signing")]
    fn one(&self) -> Elem<M, Unencoded> {
        let mut r = self.zero();
        r.limbs[0] = 1;
        r
    }

    #[cfg(feature = "rsa_signing")]
    pub fn to_elem<L>(&self, l: &Modulus<L>) -> Elem<L, Unencoded>
        where M: SmallerModulus<L>
    {
        // TODO: Encode this assertion into the `where` above.
        assert_eq!(self.width().num_limbs, l.width().num_limbs);
        let limbs = self.limbs.clone();
        Elem {
            limbs: BoxedLimbs {
                limbs: limbs.limbs,
                m: PhantomData,
            },
            encoding: PhantomData,
        }
    }
}

/// Allows writing generic algorithms that require constraining the result type
/// of the multiplication.
pub trait ModMul<B, M> {
    type Output;
    fn mod_mul(&self, b: B, m: &Modulus<M>) -> Self::Output;
}

/// Elements of ℤ/mℤ for some modulus *m*.
//
// Defaulting `E` to `Unencoded` is a convenience for callers from outside this
// submodule. However, for maximum clarity, we always explicitly use
// `Unencoded` within the `bigint` submodule.
pub struct Elem<M, E = Unencoded> {
    limbs: BoxedLimbs<M>,

    /// The number of Montgomery factors that need to be canceled out from
    /// `value` to get the actual value.
    encoding: PhantomData<E>,
}

// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone` and `E: Clone`.
impl<M, E> Clone for Elem<M, E> {
    fn clone(&self) -> Self {
        Elem {
            limbs: self.limbs.clone(),
            encoding: self.encoding.clone(),
        }
    }
}

impl<M, E> Elem<M, E> {
    #[inline]
    pub fn is_zero(&self) -> bool { self.limbs.is_zero() }
}

impl<M, E: ReductionEncoding> Elem<M, E> {
    fn decode_once(self, m: &Modulus<M>)
        -> Elem<M, <E as ReductionEncoding>::Output>
    {
        // A multiplication isn't required since we're multiplying by the
        // unencoded value one (1); only a Montgomery reduction is needed.
        // However the only non-multiplication Montgomery reduction function we
        // have requires the input to be large, so we avoid using it here.
        let mut limbs = self.limbs;
        let num_limbs = m.width().num_limbs;
        let mut one = [0; MODULUS_MAX_LIMBS];
        one[0] = 1;
        let one = &one[..num_limbs]; // assert!(num_limbs <= MODULUS_MAX_LIMBS);
        unsafe {
            GFp_bn_mul_mont(limbs.as_mut_ptr(), limbs.as_ptr(),
                            one.as_ptr(), m.limbs.as_ptr(), &m.n0, num_limbs)
        }
        Elem {
            limbs,
            encoding: PhantomData,
        }
    }
}

impl<M> Elem<M, R> {
    #[inline]
    pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> {
        self.decode_once(m)
    }
}

impl<M> Elem<M, Unencoded> {
    pub fn from_be_bytes_padded(input: untrusted::Input, m: &Modulus<M>)
                                -> Result<Self, error::Unspecified> {
        Ok(Elem {
            limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
            encoding: PhantomData,
        })
    }

    #[inline]
    pub fn fill_be_bytes(&self, out: &mut [u8]) {
        // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
        limb::big_endian_from_limbs(&self.limbs, out)
    }

    #[cfg(feature = "rsa_signing")]
    pub fn into_modulus<MM>(self) -> Result<Modulus<MM>, error::Unspecified> {
        Modulus::from_boxed_limbs(BoxedLimbs::minimal_width_from_unpadded(&self.limbs))
    }
}

#[cfg(feature = "rsa_signing")]
impl<M> IsOne for Elem<M, Unencoded> {
    fn is_one(&self) -> bool {
        limb::limbs_equal_limb_constant_time(&self.limbs, 1) ==
            limb::LimbMask::True
    }
}

#[cfg(feature = "rsa_signing")]
impl<AF, BF, M> ModMul<Elem<M, BF>, M> for Elem<M, AF>
    where (AF, BF): ProductEncoding
{
    type Output = Elem<M, <(AF, BF) as ProductEncoding>::Output>;
    fn mod_mul(&self, b: Elem<M, BF>, m: &Modulus<M>)
        -> <Self as ModMul<Elem<M, BF>, M>>::Output
    {
        elem_mul(self, b, m)
    }
}

pub fn elem_mul<M, AF, BF>(a: &Elem<M, AF>, mut b: Elem<M, BF>, m: &Modulus<M>)
        -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
        where (AF, BF): ProductEncoding {
    unsafe {
        GFp_bn_mul_mont(b.limbs.as_mut_ptr(), a.limbs.as_ptr(),
                        b.limbs.as_ptr(), m.limbs.as_ptr(), &m.n0,
                        m.limbs.len());
    }
    Elem {
        limbs: b.limbs,
        encoding: PhantomData,
    }
}

#[cfg(feature = "rsa_signing")]
pub fn elem_reduced_once<Larger, Smaller: SlightlySmallerModulus<Larger>>(
        a: &Elem<Larger, Unencoded>, m: &Modulus<Smaller>)
        -> Elem<Smaller, Unencoded> {
    let mut r = a.limbs.clone();
    assert!(r.len() <= m.limbs.len());
    limb::limbs_reduce_once_constant_time(&mut r, &m.limbs);
    Elem {
        limbs: BoxedLimbs {
            limbs: r.limbs,
            m: PhantomData,
        },
        encoding: PhantomData,
    }
}

#[cfg(feature = "rsa_signing")]
#[inline]
pub fn elem_reduced<Larger, Smaller: NotMuchSmallerModulus<Larger>>(
        a: &Elem<Larger, Unencoded>, m: &Modulus<Smaller>)
        -> Result<Elem<Smaller, RInverse>, error::Unspecified> {
    let mut tmp = [0; MODULUS_MAX_LIMBS];
    let tmp = &mut tmp[..a.limbs.len()];
    tmp.copy_from_slice(&a.limbs);

    let mut r = m.zero();
    Result::from(unsafe {
        GFp_bn_from_montgomery_in_place(r.limbs.as_mut_ptr(), r.limbs.len(),
                                        tmp.as_mut_ptr(), tmp.len(),
                                        m.limbs.as_ptr(), m.limbs.len(), &m.n0)
    })?;
    Ok(r)
}

pub fn elem_squared<M, E>(mut a: Elem<M, E>, m: &Modulus<M>)
        -> Elem<M, <(E, E) as ProductEncoding>::Output>
        where (E, E): ProductEncoding {
    unsafe {
        GFp_bn_mul_mont(a.limbs.as_mut_ptr(), a.limbs.as_ptr(),
                        a.limbs.as_ptr(), m.limbs.as_ptr(), &m.n0,
                        m.limbs.len());
    };
    Elem {
        limbs: a.limbs,
        encoding: PhantomData,
    }
}

#[cfg(feature = "rsa_signing")]
pub fn elem_widen<Larger, Smaller: SmallerModulus<Larger>>(
    a: Elem<Smaller, Unencoded>, m: &Modulus<Larger>)
    -> Elem<Larger, Unencoded>
{
    let mut r = m.zero();
    r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs);
    r
}


// TODO: Document why this works for all Montgomery factors.
#[cfg(feature = "rsa_signing")]
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>)
    -> Elem<M, E>
{
    unsafe {
        LIMBS_add_mod(a.limbs.as_mut_ptr(), a.limbs.as_ptr(),
                      b.limbs.as_ptr(), m.limbs.as_ptr(), m.limbs.len())
    }
    a
}

// TODO: Document why this works for all Montgomery factors.
#[cfg(feature = "rsa_signing")]
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>)
    -> Elem<M, E>
{
    unsafe {
        LIMBS_sub_mod(a.limbs.as_mut_ptr(), a.limbs.as_ptr(), b.limbs.as_ptr(),
                      m.limbs.as_ptr(), m.limbs.len());
    }
    a
}


// The value 1, Montgomery-encoded some number of times.
#[derive(Clone)]
pub struct One<M, E>(Elem<M, E>);

#[cfg(feature = "rsa_signing")]
impl<M> One<M, R> {
    pub fn newR(oneRR: &One<M, RR>, m: &Modulus<M>) -> One<M, R> {
        One(oneRR.0.clone().decode_once(m))
    }
}

impl<M> One<M, RR> {
    // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of
    // 2**LIMB_BITS such that R > m.
    //
    // Even though the assembly on some 32-bit platforms works with 64-bit
    // values, using `LIMB_BITS` here, rather than `N0_LIMBS_USED * LIMB_BITS`,
    // is correct because R**2 will still be a multiple of the latter as
    // `N0_LIMBS_USED` is either one or two.
    pub fn newRR(m: &Modulus<M>) -> One<M, RR> {
        use limb::LIMB_BITS;

        let m_bits = minimal_limbs_bit_length(&m.limbs).as_usize_bits();

        let r = (m_bits + (LIMB_BITS - 1)) / LIMB_BITS * LIMB_BITS;

        // base = 2**(lg m - 1).
        let bit = m_bits - 1;
        let mut base = m.zero();
        base.limbs[bit / LIMB_BITS] = 1 << (bit % LIMB_BITS);

        // Double `base` so that base == R == 2**r (mod m). For normal moduli
        // that have the high bit of the highest limb set, this requires one
        // doubling. Unusual moduli require more doublings but we are less
        // concerned about the performance of those.
        //
        // Then double `base` again so that base == 2*R (mod n), i.e. `2` in
        // Montgomery form (`elem_exp_vartime_()` requires the base to be in
        // Montgomery form). Then compute
        // RR = R**2 == base**r == R**r == (2**r)**r (mod n).
        //
        // Take advantage of the fact that `LIMBS_shl_mod` is faster than
        // `elem_squared` by replacing some of the early squarings with shifts.
        // TODO: Benchmark shift vs. squaring performance to determine the
        // optimal value of `lg_base`.
        let lg_base = 2usize; // Shifts vs. squaring trade-off.
        debug_assert_eq!(lg_base.count_ones(), 1); // Must 2**n for n >= 0.
        let shifts = r - bit + lg_base;
        let exponent = (r / lg_base) as u64;
        let num_limbs = base.limbs.len();
        for _ in 0..shifts {
            unsafe {
                LIMBS_shl_mod(base.limbs.as_mut_ptr(), base.limbs.as_ptr(),
                              m.limbs.as_ptr(), num_limbs);
            }
        }
        let RR = elem_exp_vartime_(base, exponent, m);

        One(Elem {
            limbs: RR.limbs,
            encoding: PhantomData, // PhantomData<RR>
        })
    }
}

#[cfg(feature = "rsa_signing")]
impl<M> One<M, RRR> {
    pub fn newRRR(oneRR: One<M, RR>, m: &Modulus<M>) -> One<M, RRR> {
        One(elem_squared(oneRR.0, &m))
    }
}

impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
    fn as_ref(&self) -> &Elem<M, E> { &self.0 }
}

/// A non-secret odd positive value in the range
/// [3, PUBLIC_EXPONENT_MAX_VALUE].
#[derive(Clone, Copy, Debug)]
pub struct PublicExponent(u64);

impl PublicExponent {
    pub fn from_be_bytes(input: untrusted::Input, min_value: u64)
                         -> Result<Self, error::Unspecified> {
        if input.len() > 5 {
            return Err(error::Unspecified);
        }
        let value = input.read_all_mut(error::Unspecified, |input| {
            // The exponent can't be zero and it can't be prefixed with
            // zero-valued bytes.
            if input.peek(0) {
                return Err(error::Unspecified);
            }
            let mut value = 0u64;
            loop {
                let byte = input.read_byte()?;
                value = (value << 8) | u64::from(byte);
                if input.at_end() {
                    return Ok(value);
                }
            }
        })?;
        if value & 1 != 1 {
            return Err(error::Unspecified);
        }
        if value < min_value {
            return Err(error::Unspecified);
        }
        if value > PUBLIC_EXPONENT_MAX_VALUE {
            return Err(error::Unspecified);
        }
        Ok(PublicExponent(value))
    }
}

// This limit was chosen to bound the performance of the simple
// exponentiation-by-squaring implementation in `elem_exp_vartime`. In
// particular, it helps mitigate theoretical resource exhaustion attacks. 33
// bits was chosen as the limit based on the recommendations in [1] and
// [2]. Windows CryptoAPI (at least older versions) doesn't support values
// larger than 32 bits [3], so it is unlikely that exponents larger than 32
// bits are being used for anything Windows commonly does.
//
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
pub const PUBLIC_EXPONENT_MAX_VALUE: u64 = (1u64 << 33) - 1;

/// Calculates base**exponent (mod m).
// TODO: The test coverage needs to be expanded, e.g. test with the largest
// accepted exponent and with the most common values of 65537 and 3.
pub fn elem_exp_vartime<M>(
        base: Elem<M, R>, PublicExponent(exponent): PublicExponent,
        m: &Modulus<M>) -> Elem<M, R> {
    elem_exp_vartime_(base, exponent, m)
}

/// Calculates base**exponent (mod m).
fn elem_exp_vartime_<M>(
    base: Elem<M, R>, exponent: u64, m: &Modulus<M>) -> Elem<M, R>
{
    // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
    // square-and-multiply that scans the exponent from the most significant
    // bit to the least significant bit (left-to-right). Left-to-right requires
    // less storage compared to right-to-left scanning, at the cost of needing
    // to compute `exponent.leading_zeros()`, which we assume to be cheap.
    //
    // During RSA public key operations the exponent is almost always either 65537
    // (0b10000000000000001) or 3 (0b11), both of which have a Hamming weight
    // of 2. During Montgomery setup the exponent is almost always a power of two,
    // with Hamming weight 1. As explained in [Knuth], exponentiation by squaring
    // is the most efficient algorithm when the Hamming weight is 2 or less. It
    // isn't the most efficient for all other, uncommon, exponent values but any
    // suboptimality is bounded by `PUBLIC_EXPONENT_MAX_VALUE`.
    //
    // This implementation is slightly simplified by taking advantage of the
    // fact that we require the exponent to be a positive integer.
    //
    // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical
    //          Algorithms (3rd Edition), Section 4.6.3.
    assert!(exponent >= 1);
    assert!(exponent <= PUBLIC_EXPONENT_MAX_VALUE);
    let mut acc = base.clone();
    let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
    debug_assert!((exponent & bit) != 0);
    while bit > 1 {
        bit >>= 1;
        acc = elem_squared(acc, m);
        if (exponent & bit) != 0 {
            acc = elem_mul(&base, acc, m);
        }
    }
    acc
}

// `M` represents the prime modulus for which the exponent is in the interval
// [1, `m` - 1).
#[cfg(feature = "rsa_signing")]
pub struct PrivateExponent<M> {
    limbs: BoxedLimbs<M>,
}

#[cfg(feature = "rsa_signing")]
impl<M> PrivateExponent<M> {
    pub fn from_be_bytes_padded(input: untrusted::Input, p: &Modulus<M>)
                                -> Result<Self, error::Unspecified> {
        let dP = BoxedLimbs::from_be_bytes_padded_less_than(input, p)?;

        // Proof that `dP < p - 1`:
        //
        // If `dP < p` then either `dP == p - 1` or `dP < p - 1`. Since `p` is
        // odd, `p - 1` is even. `d` is odd, and an odd number modulo an even
        // number is odd. Therefore `dP` must be odd. But then it cannot be
        // `p - 1` and so we know `dP < p - 1`.
        //
        // Further we know `dP != 0` because `dP` is not even.
        if limb::limbs_are_even_constant_time(&dP) != limb::LimbMask::False {
            return Err(error::Unspecified);
        }

        Ok(PrivateExponent {
            limbs: dP,
        })
    }
}

#[cfg(feature = "rsa_signing")]
impl<M: Prime> PrivateExponent<M> {
    // Returns `p - 2`.
    fn for_flt(p: &Modulus<M>) -> Self {
        let two = elem_add(p.one(), p.one(), p);
        let p_minus_2 = elem_sub(p.zero(), &two, p);
        PrivateExponent {
            limbs: p_minus_2.limbs,
        }
    }
}

#[cfg(feature = "rsa_signing")]
pub fn elem_exp_consttime<M>(
        base: Elem<M, R>, exponent: &PrivateExponent<M>, oneR: &One<M, R>,
        m: &Modulus<M>) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    let mut r = Elem {
        limbs: base.limbs,
        encoding: PhantomData,
    };
    Result::from(unsafe {
        GFp_BN_mod_exp_mont_consttime(r.limbs.as_mut_ptr(), r.limbs.as_ptr(),
                                      exponent.limbs.as_ptr(),
                                      oneR.0.limbs.as_ptr(), m.limbs.as_ptr(),
                                      m.limbs.len(), &m.n0)
    })?;

    // XXX: On x86-64 only, `GFp_BN_mod_exp_mont_consttime` does the conversion
    // from Montgomery form itself using a special assembly-language reduction
    // function. This means that at this point, whether `r` is Montgomery
    // encoded, and the exact type of `R` (in particular, its `E` type
    // parameter) depends on the platform. Type inference masks this.
    //
    // TODO: Get rid of that special assembly-language reduction function if
    // practical.

    #[cfg(not(target_arch = "x86_64"))]
    let r = r.into_unencoded(m);

    Ok(r)
}

/// Uses Fermat's Little Theorem to calculate modular inverse in constant time.
#[cfg(feature = "rsa_signing")]
pub fn elem_inverse_consttime<M: Prime>(
        a: Elem<M, R>,
        m: &Modulus<M>,
        oneR: &One<M, R>) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    elem_exp_consttime(a, &PrivateExponent::for_flt(&m), oneR, m)
}

/// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m).
#[cfg(feature = "rsa_signing")]
pub fn verify_inverses_consttime<M, A, B>(a: &A, b: B, m: &Modulus<M>)
    -> Result<(), error::Unspecified> where
    A: ModMul<B, M>,
    <A as ModMul<B, M>>::Output: IsOne
{
    if a.mod_mul(b, m).is_one() {
        Ok(())
    } else {
        Err(error::Unspecified)
    }
}

#[cfg(any(test, feature = "rsa_signing"))]
pub fn elem_verify_equal_consttime<M, E>(a: &Elem<M, E>, b: &Elem<M, E>)
                                         -> Result<(), error::Unspecified> {
    // XXX: Not constant-time if the number of limbs in `a` and `b` differ.
    constant_time::verify_slices_are_equal(limb::limbs_as_bytes(&a.limbs),
                                           limb::limbs_as_bytes(&b.limbs))
}

/// Nonnegative integers.
#[cfg(feature = "rsa_signing")]
pub struct Nonnegative {
    limbs: std::vec::Vec<limb::Limb>,
}

#[cfg(feature = "rsa_signing")]
impl Nonnegative {
    pub fn from_be_bytes_with_bit_length(input: untrusted::Input)
        -> Result<(Self, bits::BitLength), error::Unspecified> {
        let mut limbs =
            vec![0; (input.len() + limb::LIMB_BYTES - 1) / limb::LIMB_BYTES];
        // Rejects empty inputs.
        limb::parse_big_endian_and_pad_consttime(input, &mut limbs)?;
        while limbs.last() == Some(&0) {
            let _ = limbs.pop();
        }
        let r_bits = minimal_limbs_bit_length(&limbs);
        Ok((Self { limbs }, r_bits))
    }

    #[inline]
    pub fn is_odd(&self) -> bool {
        limb::limbs_are_even_constant_time(&self.limbs) != limb::LimbMask::True
    }

    pub fn verify_less_than(&self, other: &Self)
                        -> Result<(), error::Unspecified> {
        if !greater_than(other, self) {
            return Err(error::Unspecified);
        }
        Ok(())
    }

    pub fn to_elem<M>(&self, m: &Modulus<M>)
                      -> Result<Elem<M, Unencoded>, error::Unspecified> {
        self.verify_less_than_modulus(&m)?;
        let mut r = m.zero();
        r.limbs[0..self.limbs.len()].copy_from_slice(&self.limbs);
        Ok(r)
    }

    pub fn verify_less_than_modulus<M>(&self, m: &Modulus<M>)
                                       -> Result<(), error::Unspecified>
    {
        if self.limbs.len() > m.limbs.len() {
            return Err(error::Unspecified);
        }
        if self.limbs.len() == m.limbs.len() {
            if limb::limbs_less_than_limbs_consttime(&self.limbs, &m.limbs)
                != limb::LimbMask::True {
                return Err(error::Unspecified)
            }
        }
        return Ok(())
    }
}

#[cfg(feature = "rsa_signing")]
impl IsOne for Nonnegative {
    fn is_one(&self) -> bool {
        limb::limbs_equal_limb_constant_time(&self.limbs, 1) ==
            limb::LimbMask::True
    }
}

// Returns the number of bits in `a` assuming that the top word of `a` is not
// zero.
fn minimal_limbs_bit_length(a: &[limb::Limb]) -> bits::BitLength {
    let bits = match a.last() {
        Some(limb) => {
            assert_ne!(*limb, 0);
            // XXX: This assumes `Limb::leading_zeros()` is constant-time.
            let high_bits = a.last().map_or(0, |high_limb| {
                limb::LIMB_BITS - (high_limb.leading_zeros() as usize)
            });
            ((a.len() - 1) * limb::LIMB_BITS) + high_bits
        },
        None => 0,
    };
    bits::BitLength::from_usize_bits(bits)
}

// Returns a > b.
#[cfg(feature = "rsa_signing")]
fn greater_than(a: &Nonnegative, b: &Nonnegative) -> bool {
    if a.limbs.len() == b.limbs.len() {
        limb::limbs_less_than_limbs_vartime(&b.limbs, &a.limbs)
    } else {
        a.limbs.len() > b.limbs.len()
    }
}

type N0 = [limb::Limb; N0_LIMBS];
const N0_LIMBS: usize = 2;

#[cfg(target_pointer_width = "64")]
const N0_LIMBS_USED: usize = 1;

#[cfg(target_pointer_width = "64")]
#[inline]
fn n0_from_u64(n0: u64) -> N0 {
    [n0, 0]
}

#[cfg(target_pointer_width = "32")]
const N0_LIMBS_USED: usize = 2;

#[cfg(target_pointer_width = "32")]
#[inline]
fn n0_from_u64(n0: u64) -> N0 {
    [n0 as limb::Limb, (n0 >> limb::LIMB_BITS) as limb::Limb]
}

extern {
    // `r` and/or 'a' and/or 'b' may alias.
    fn GFp_bn_mul_mont(r: *mut limb::Limb, a: *const limb::Limb,
                       b: *const limb::Limb, n: *const limb::Limb,
                       n0: &N0, num_limbs: c::size_t);
    fn GFp_bn_mul_mont_check_num_limbs(num_limbs: c::size_t) -> bssl::Result;

    fn GFp_bn_neg_inv_mod_r_u64(n: u64) -> u64;

    fn LIMBS_shl_mod(r: *mut limb::Limb, a: *const limb::Limb,
                     m: *const limb::Limb, num_limbs: c::size_t);
}

#[cfg(feature = "rsa_signing")]
extern {
    fn GFp_bn_from_montgomery_in_place(r: *mut limb::Limb, num_r: c::size_t,
                                       a: *mut limb::Limb, num_a: c::size_t,
                                       n: *const limb::Limb, num_n: c::size_t,
                                       n0: &N0) -> bssl::Result;

    // `r` and `a` may alias.
    fn GFp_BN_mod_exp_mont_consttime(r: *mut limb::Limb,
                                     a_mont: *const limb::Limb,
                                     p: *const limb::Limb,
                                     one_mont: *const limb::Limb,
                                     n: *const limb::Limb,
                                     num_limbs: c::size_t, n0: &N0) -> bssl::Result;

    // `r` and `a` may alias.
    fn LIMBS_add_mod(r: *mut limb::Limb, a: *const limb::Limb,
                     b: *const limb::Limb, m: *const limb::Limb,
                     num_limbs: c::size_t);
    fn LIMBS_sub_mod(r: *mut limb::Limb, a: *const limb::Limb,
                     b: *const limb::Limb, m: *const limb::Limb,
                     num_limbs: c::size_t);
}

#[cfg(test)]
mod tests {
    use super::*;
    use untrusted;
    use test;

    // Type-level representation of an arbitrary modulus.
    struct M {}

    #[cfg(feature = "rsa_signing")]
    #[test]
    fn test_elem_exp_consttime() {
        test::from_file("src/rsa/bigint_elem_exp_consttime_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");

            let m = consume_modulus::<M>(test_case, "M");
            let expected_result = consume_elem(test_case, "ModExp", &m);
            let base = consume_elem(test_case, "A", &m);
            let e = {
                let bytes = test_case.consume_bytes("E");
                PrivateExponent::from_be_bytes_padded(
                    untrusted::Input::from(&bytes), &m).expect("valid exponent")
            };
            let base = into_encoded(base, &m);
            let oneRR = One::newRR(&m);
            let one = One::newR(&oneRR, &m);
            let actual_result = elem_exp_consttime(base, &e, &one, &m).unwrap();
            assert_elem_eq(&actual_result, &expected_result);

            Ok(())
        })
    }

    #[test]
    fn test_elem_exp_vartime() {
        test::from_file("src/rsa/bigint_elem_exp_vartime_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");

            let m = consume_modulus::<M>(test_case, "M");
            let expected_result = consume_elem(test_case, "ModExp", &m);
            let base = consume_elem(test_case, "A", &m);
            let e = consume_public_exponent(test_case, "E");

            let base = into_encoded(base, &m);
            let actual_result = elem_exp_vartime(base, e, &m);
            let actual_result = actual_result.into_unencoded(&m);
            assert_elem_eq(&actual_result, &expected_result);

            Ok(())
        })
    }

    #[test]
    fn test_elem_mul() {
        test::from_file("src/rsa/bigint_elem_mul_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");

            let m = consume_modulus::<M>(test_case, "M");
            let expected_result = consume_elem(test_case, "ModMul", &m);
            let a = consume_elem(test_case, "A", &m);
            let b = consume_elem(test_case, "B", &m);

            let b = into_encoded(b, &m);
            let a = into_encoded(a, &m);
            let actual_result = elem_mul(&a, b, &m);
            let actual_result = actual_result.into_unencoded(&m);
            assert_elem_eq(&actual_result, &expected_result);

            Ok(())
        })
    }

    #[test]
    fn test_elem_squared() {
        test::from_file("src/rsa/bigint_elem_squared_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");

            let m = consume_modulus::<M>(test_case, "M");
            let expected_result = consume_elem(test_case, "ModSquare", &m);
            let a = consume_elem(test_case, "A", &m);

            let a = into_encoded(a, &m);
            let actual_result = elem_squared(a, &m);
            let actual_result = actual_result.into_unencoded(&m);
            assert_elem_eq(&actual_result, &expected_result);

            Ok(())
        })
    }

    #[cfg(feature = "rsa_signing")]
    #[test]
    fn test_elem_reduced() {
        test::from_file("src/rsa/bigint_elem_reduced_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");

            struct MM {}
            unsafe impl SmallerModulus<MM> for M {}
            unsafe impl NotMuchSmallerModulus<MM> for M {}

            let m = consume_modulus::<M>(test_case, "M");
            let expected_result = consume_elem(test_case, "R", &m);
            let a = consume_elem_unchecked::<MM>(
                test_case, "A", expected_result.limbs.len() * 2);

            let actual_result = elem_reduced(&a, &m).unwrap();
            let oneRR = One::newRR(&m);
            let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
            assert_elem_eq(&actual_result, &expected_result);

            Ok(())
        })
    }

    #[cfg(feature = "rsa_signing")]
    #[test]
    fn test_elem_reduced_once() {
        test::from_file("src/rsa/bigint_elem_reduced_once_tests.txt",
                        |section, test_case| {
            assert_eq!(section, "");

            struct N {}
            struct QQ {}
            unsafe impl SmallerModulus<N> for QQ {}
            unsafe impl SlightlySmallerModulus<N> for QQ {}

            let qq = consume_modulus::<QQ>(test_case, "QQ");
            let expected_result = consume_elem::<QQ>(test_case, "R", &qq);
            let n = consume_modulus::<N>(test_case, "N");
            let a = consume_elem::<N>(test_case, "A", &n);

            let actual_result = elem_reduced_once(&a, &qq);
            assert_elem_eq(&actual_result, &expected_result);

            Ok(())
        })
    }

    fn consume_elem<M>(test_case: &mut test::TestCase, name: &str, m: &Modulus<M>)
                       -> Elem<M, Unencoded> {
        let value = test_case.consume_bytes(name);
        Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
    }

    #[cfg(feature = "rsa_signing")]
    fn consume_elem_unchecked<M>(test_case: &mut test::TestCase, name: &str,
                                 num_limbs: usize) -> Elem<M, Unencoded> {
        let value = consume_nonnegative(test_case, name);
        let mut limbs = BoxedLimbs::zero(Width { num_limbs, m: PhantomData });
        limbs[0..value.limbs.len()].copy_from_slice(&value.limbs);
        Elem {
            limbs,
            encoding: PhantomData,
        }
    }

    fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str)
                          -> Modulus<M> {
        let value = test_case.consume_bytes(name);
        let (value, _) = Modulus::from_be_bytes_with_bit_length(
            untrusted::Input::from(&value)).unwrap();
        value
    }

    fn consume_public_exponent(test_case: &mut test::TestCase, name: &str)
                               -> PublicExponent {
        let bytes = test_case.consume_bytes(name);
        PublicExponent::from_be_bytes(
            untrusted::Input::from(&bytes), 3).unwrap()
    }

    #[cfg(feature = "rsa_signing")]
    fn consume_nonnegative(test_case: &mut test::TestCase, name: &str)
                           -> Nonnegative {
        let bytes = test_case.consume_bytes(name);
        let (r, _r_bits) = Nonnegative::from_be_bytes_with_bit_length(
            untrusted::Input::from(&bytes)).unwrap();
        r
    }

    fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
        elem_verify_equal_consttime(&a, b).unwrap()
    }

    fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
        let oneRR = One::newRR(&m);
        elem_mul(&oneRR.as_ref(), a, m)
    }
}