1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
//! Observation RINEX module
use super::{epoch, prelude::*, version::Version};
use std::collections::HashMap;

pub mod record;
mod snr;

#[cfg(docrs)]
use crate::Bibliography;

pub use record::{LliFlags, ObservationData, Record};
pub use snr::Snr;

macro_rules! fmt_month {
    ($m: expr) => {
        match $m {
            1 => "Jan",
            2 => "Feb",
            3 => "Mar",
            4 => "Apr",
            5 => "May",
            6 => "Jun",
            7 => "Jul",
            8 => "Aug",
            9 => "Sep",
            10 => "Oct",
            11 => "Nov",
            _ => "Dec",
        }
    };
}

#[cfg(feature = "serde")]
use serde::Serialize;

/// Describes `Compact RINEX` specific information
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Crinex {
    /// Compression program version
    pub version: Version,
    /// Compression program name
    pub prog: String,
    /// Date of compression
    pub date: Epoch,
}

impl Crinex {
    /// Sets compression algorithm revision
    pub fn with_version(&self, version: Version) -> Self {
        let mut s = self.clone();
        s.version = version;
        s
    }
    /// Sets compression program name
    pub fn with_prog(&self, prog: &str) -> Self {
        let mut s = self.clone();
        s.prog = prog.to_string();
        s
    }
    /// Sets compression date
    pub fn with_date(&self, e: Epoch) -> Self {
        let mut s = self.clone();
        s.date = e;
        s
    }
}

impl Default for Crinex {
    fn default() -> Self {
        Self {
            version: Version { major: 3, minor: 0 },
            prog: format!("rust-rinex-{}", env!("CARGO_PKG_VERSION")),
            date: epoch::now(),
        }
    }
}

impl std::fmt::Display for Crinex {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        let version = self.version.to_string();
        write!(f, "{:<width$}", version, width = 20)?;
        write!(f, "{:<width$}", "COMPACT RINEX FORMAT", width = 20)?;
        write!(
            f,
            "{value:<width$} CRINEX VERS   / TYPE\n",
            value = "",
            width = 19
        )?;
        write!(f, "{:<width$}", self.prog, width = 20)?;
        write!(f, "{:20}", "")?;
        let (y, m, d, hh, mm, _, _) = self.date.to_gregorian_utc();
        let m = fmt_month!(m);
        let date = format!("{:02}-{}-{} {:02}:{:02}", d, m, y - 2000, hh, mm);
        write!(f, "{:<width$}", date, width = 20)?;
        f.write_str("CRINEX PROG / DATE")
    }
}

/// Describes known marker types
/// Observation Record specific header fields
#[derive(Debug, Clone, Default, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct HeaderFields {
    /// Optional CRINEX information
    pub crinex: Option<Crinex>,
    /// Observables per constellation basis
    pub codes: HashMap<Constellation, Vec<Observable>>,
    /// True if local clock drift is compensated for
    pub clock_offset_applied: bool,
    /// DCBs compensation per constellation basis
    pub dcb_compensations: Vec<Constellation>,
    /// Optionnal data scalings
    pub scalings: HashMap<Constellation, HashMap<Observable, f64>>,
}

impl HeaderFields {
    /// Add an optionnal data scaling
    pub fn with_scaling(&self, c: Constellation, observable: Observable, scaling: f64) -> Self {
        let mut s = self.clone();
        if let Some(scalings) = s.scalings.get_mut(&c) {
            scalings.insert(observable, scaling);
        } else {
            let mut map: HashMap<Observable, f64> = HashMap::new();
            map.insert(observable, scaling);
            s.scalings.insert(c, map);
        }
        s
    }
    /// Returns given scaling to apply for given GNSS system
    /// and given observation. Returns 1.0 by default, so it always applies
    pub fn scaling(&self, c: &Constellation, observable: Observable) -> f64 {
        if let Some(scalings) = self.scalings.get(c) {
            if let Some(scaling) = scalings.get(&observable) {
                return *scaling;
            }
        }
        1.0
    }

    /// Emphasize that DCB is compensated for
    pub fn with_dcb_compensation(&self, c: Constellation) -> Self {
        let mut s = self.clone();
        s.dcb_compensations.push(c);
        s
    }
    /// Returns true if DCB compensation was applied for given constellation.
    /// If constellation is None: we test against all encountered constellation
    pub fn dcb_compensation(&self, c: Option<Constellation>) -> bool {
        if let Some(c) = c {
            for comp in &self.dcb_compensations {
                if *comp == c {
                    return true;
                }
            }
            false
        } else {
            for (cst, _) in &self.codes {
                // all encountered constellations
                let mut found = false;
                for ccst in &self.dcb_compensations {
                    // all compensated constellations
                    if ccst == cst {
                        found = true;
                        break;
                    }
                }
                if !found {
                    return false;
                }
            }
            true
        }
    }
}

#[cfg(feature = "obs")]
#[derive(Debug, Clone, Copy)]
pub(crate) enum StatisticalOps {
    Min,
    Max,
    Mean,
    StdDev,
    StdVar,
}

#[cfg(feature = "obs")]
use std::collections::BTreeMap;

/// OBS RINEX specific analysis trait.
/// Include this trait to unlock Observation analysis, mainly statistical analysis.
#[cfg(feature = "obs")]
#[cfg_attr(docrs, doc(cfg(feature = "obs")))]
pub trait Observation {
    /// Returns minimum value observed, throughout all epochs, sorted by Observable.
    /// This also applies to clock receiver estimate,
    /// when requested on OBS RINEX files, not METEO files.
    /// ```
    /// use rinex::*; // prelude + macros
    /// use rinex::prelude::*;
    /// use std::str::FromStr; // observable!
    /// use rinex::observation::Observation; // .min_observable()
    ///
    /// // OBS RINEX example
    /// let rinex = Rinex::from_file("../test_resources/OBS/V3/DUTH0630.22O")
    ///     .unwrap();
    /// let min_values = rinex.min_observable();
    /// for (observable, min_value) in min_values {
    ///     if observable == observable!("S1C") {
    ///         // minimum signal strength for carrier 1
    ///         assert_eq!(min_value, 37.75); // L1 carrier min (worst) RSSI
    ///     }
    /// }
    ///
    /// // METEO RINEX example
    /// let rinex = Rinex::from_file("../test_resources/MET/V2/clar0020.00m")
    ///     .unwrap();
    /// let min_values = rinex.min_observable();
    /// for (observable, min_value) in min_values {
    ///     if observable == Observable::Temperature {
    ///         assert_eq!(min_value, 8.4); // min value encountered on that day
    ///     }
    /// }
    /// ```
    fn min_observable(&self) -> HashMap<Observable, f64>;

    /// Returns maximal value observed, throughout all epochs, sorted by Observable.
    /// See [Self::min_observable()] for API example.
    fn max_observable(&self) -> HashMap<Observable, f64>;

    /// Returns mean observation, throughout all epochs, sorted by Observable.
    /// See [Self::min_observable()] for API example.
    fn mean_observable(&self) -> HashMap<Observable, f64>;

    /// Returns standard deviation for all Observables.
    /// See [Self::min_observable()] for API example.
    fn std_dev_observable(&self) -> HashMap<Observable, f64>;

    /// Returns standard variance for all Observables.
    /// See [Self::min_observable()] for API example.
    fn std_var_observable(&self) -> HashMap<Observable, f64>;

    /// Returns minimum value observed throughout all epochs sorted by
    /// Satellite vehicle and Observable. This does not apply to METEO
    /// RINEX files.
    /// ```
    /// use rinex::*;
    /// use rinex::prelude::*; // basics
    /// use std::str::FromStr; // sv!, observable!
    /// use rinex::observation::Observation; // .min()
    ///
    /// // OBS RINEX example
    /// let rinex = Rinex::from_file("../test_resources/OBS/V3/DUTH0630.22O")
    ///     .unwrap();
    ///
    /// let (min_clock, min_values) = rinex.min();
    /// assert!(min_clock.is_none()); // we don't have an example file with such information yet
    ///
    /// for (sv, observables) in min_values {
    ///     if sv == sv!("G08") {
    ///         for (observable, min_value) in observables {
    ///             if observable == observable!("S1C") {
    ///                 // minimum signal strength for carrier 1
    ///                 // for that particular vehicle
    ///             }
    ///         }
    ///     }
    /// }
    /// ```
    fn min(&self) -> (Option<f64>, HashMap<Sv, HashMap<Observable, f64>>);

    /// Returns maximal value observed throughout all epochs sorted by
    /// Satellite vehicle and Observable. This does not apply to METEO
    /// RINEX files. See [Self::min()] for API example.
    fn max(&self) -> (Option<f64>, HashMap<Sv, HashMap<Observable, f64>>);

    /// Returns mean value observed throughout all epochs sorted by
    /// Satellite vehicle and Observable. This does not apply to METEO
    /// RINEX files. See [Self::min()] for API example.
    fn mean(&self) -> (Option<f64>, HashMap<Sv, HashMap<Observable, f64>>);

    /// Returns observations deviation throughout all epochs sorted by
    /// Satellite vehicle and Observable. This does not apply to METEO
    /// RINEX files. See [Self::min()] for API example.
    fn std_dev(&self) -> (Option<f64>, HashMap<Sv, HashMap<Observable, f64>>);

    /// Returns observations variance throughout all epochs sorted by
    /// Satellite vehicle and Observable. This does not apply to METEO
    /// RINEX files. See [Self::min()] for API example.
    fn std_var(&self) -> (Option<f64>, HashMap<Sv, HashMap<Observable, f64>>);
}

/// GNSS signal recombination trait.    
/// Import this to recombine OBS RINEX with usual recombination methods.   
/// This only applies to OBS RINEX records.  
/// Refer to [Bibliography::ESAGnssCombination] and [Bibliography::ESABookVol1]
/// for more information.
#[cfg(feature = "obs")]
#[cfg_attr(docrs, doc(cfg(feature = "obs")))]
pub trait Combine {
    /// Perform Geometry Free signal recombination on all phase
    /// and pseudo range observations, for each individual Sv
    /// and individual Epoch.   
    /// Geometry Free (Gf) recombination cancels out geometric
    /// biases and leaves frequency dependent terms out,
    /// like Ionospheric induced time delay.  
    /// ```
    /// use rinex::prelude::*;
    /// use rinex::observation::*;
    ///
    /// let rinex = Rinex::from_file("../test_resources/OBS/V3/DUTH0630.22O")
    ///		.unwrap();
    ///
    /// let gf = rinex.geo_free();
    /// for ((ref_observable, rhs_observable), data) in gf {
    ///     // for each recombination that we were able to form,
    ///     // a "reference" observable was chosen,
    ///     // and RHS observable is compared to it.
    ///     // For example "L2C-L1C" : L1C is the reference observable
    ///     for (sv, epochs) in data {
    ///         // applied to all possible Sv
    ///         for ((epoch, _flag), value) in epochs {
    ///             // value: actual recombination result
    ///         }
    ///     }
    /// }
    /// ```
    fn geo_free(
        &self,
    ) -> HashMap<(Observable, Observable), BTreeMap<Sv, BTreeMap<(Epoch, EpochFlag), f64>>>;

    /// Perform Wide Lane recombination.   
    /// See [Self::geo_free] for API example.
    fn wide_lane(
        &self,
    ) -> HashMap<(Observable, Observable), BTreeMap<Sv, BTreeMap<(Epoch, EpochFlag), f64>>>;

    /// Perform Narrow Lane recombination.   
    /// See [Self::geo_free] for API example.
    fn narrow_lane(
        &self,
    ) -> HashMap<(Observable, Observable), BTreeMap<Sv, BTreeMap<(Epoch, EpochFlag), f64>>>;

    /// Perform Melbourne-Wübbena recombination.   
    /// See [`Self::geo_free`] for API example.
    fn melbourne_wubbena(
        &self,
    ) -> HashMap<(Observable, Observable), BTreeMap<Sv, BTreeMap<(Epoch, EpochFlag), f64>>>;
}

/// GNSS code bias estimation trait.
/// Refer to [Bibliography::ESAGnssCombination] and [Bibliography::ESABookVol1].
#[cfg(feature = "obs")]
#[cfg_attr(docrs, doc(cfg(feature = "obs")))]
pub trait Dcb {
    /// Returns Differential Code Bias estimates, sorted per (unique)
    /// signals combinations and for each individual Sv.
    /// ```
    /// use rinex::prelude::*;
    /// use rinex::observation::*; // .dcb()
    ///
    /// let rinex = Rinex::from_file("../test_resources/OBS/V3/DUTH0630.22O")
    ///		.unwrap();
    /// let dcb = rinex.dcb();
    /// ```
    fn dcb(&self) -> HashMap<String, BTreeMap<Sv, BTreeMap<(Epoch, EpochFlag), f64>>>;
}

/// Multipath biases estimation.
/// Refer to [Bibliography::ESABookVol1] and [Bibliography::MpTaoglas].
#[cfg(feature = "obs")]
#[cfg_attr(docrs, doc(cfg(feature = "obs")))]
pub trait Mp {
    /// Returns Multipath bias estimates,
    /// sorted per (unique) signal combinations and for each individual Sv.
    fn mp(&self) -> HashMap<String, BTreeMap<Sv, BTreeMap<(Epoch, EpochFlag), f64>>>;
}

/// Ionospheric Delay estimation trait.
#[cfg(feature = "obs")]
#[cfg_attr(docrs, doc(cfg(feature = "obs")))]
pub trait IonoDelay {
    /// The Iono delay estimator is the derivative of the [Combine::geo_free]
    /// recombination. One can then use a peak detector for example,
    /// to determine signal perturbations, due to ionospheric activity.
    /// To improve behavior and avoid discontinuities on data gaps,
    /// we perform the derivative only if the previous point was sampled at worst
    /// `max_dt` prior current point.  
    /// This is intended to be used on raw Phase data only,
    /// but can be evaluated on PR too (if such data is passed).  
    /// In that scenario, ideally the user used a smoothing algorithm,
    /// prior to invoking this method: see the preprocessing toolkit.
    fn iono_delay(
        &self,
        max_dt: Duration,
    ) -> HashMap<Observable, HashMap<Sv, BTreeMap<Epoch, f64>>>;
}

#[cfg(test)]
mod crinex {
    use super::*;
    #[test]
    fn test_fmt_month() {
        assert_eq!(fmt_month!(1), "Jan");
        assert_eq!(fmt_month!(2), "Feb");
        assert_eq!(fmt_month!(3), "Mar");
        assert_eq!(fmt_month!(10), "Oct");
        assert_eq!(fmt_month!(11), "Nov");
        assert_eq!(fmt_month!(12), "Dec");
    }
    #[test]
    fn test_display() {
        let crinex = Crinex::default();
        let now = Epoch::now().unwrap();
        let (_y, _m, _d, _hh, _mm, _, _) = now.to_gregorian_utc();
        let content = crinex.to_string();
        let lines: Vec<&str> = content.lines().collect();
        assert_eq!(lines.len(), 2); // main title should span 2 lines

        // test first line
        let expected =
            "3.0                 COMPACT RINEX FORMAT                    CRINEX VERS   / TYPE";
        assert_eq!(expected, lines[0]);

        // test second line width : must follow RINEX standards
        //assert_eq!(lines[1].len(), 80);
    }
}