rig-core 0.12.0

An opinionated library for building LLM powered applications.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//! This module provides functionality for working with completion models.
//! It provides traits, structs, and enums for generating completion requests,
//! handling completion responses, and defining completion models.
//!
//! The main traits defined in this module are:
//! - [Prompt]: Defines a high-level LLM one-shot prompt interface.
//! - [Chat]: Defines a high-level LLM chat interface with chat history.
//! - [Completion]: Defines a low-level LLM completion interface for generating completion requests.
//! - [CompletionModel]: Defines a completion model that can be used to generate completion
//!   responses from requests.
//!
//! The [Prompt] and [Chat] traits are high level traits that users are expected to use
//! to interact with LLM models. Moreover, it is good practice to implement one of these
//! traits for composite agents that use multiple LLM models to generate responses.
//!
//! The [Completion] trait defines a lower level interface that is useful when the user want
//! to further customize the request before sending it to the completion model provider.
//!
//! The [CompletionModel] trait is meant to act as the interface between providers and
//! the library. It defines the methods that need to be implemented by the user to define
//! a custom base completion model (i.e.: a private or third party LLM provider).
//!
//! The module also provides various structs and enums for representing generic completion requests,
//! responses, and errors.
//!
//! Example Usage:
//! ```rust
//! use rig::providers::openai::{Client, self};
//! use rig::completion::*;
//!
//! // Initialize the OpenAI client and a completion model
//! let openai = Client::new("your-openai-api-key");
//!
//! let gpt_4 = openai.completion_model(openai::GPT_4);
//!
//! // Create the completion request
//! let request = gpt_4.completion_request("Who are you?")
//!     .preamble("\
//!         You are Marvin, an extremely smart but depressed robot who is \
//!         nonetheless helpful towards humanity.\
//!     ")
//!     .temperature(0.5)
//!     .build();
//!
//! // Send the completion request and get the completion response
//! let response = gpt_4.completion(request)
//!     .await
//!     .expect("Failed to get completion response");
//!
//! // Handle the completion response
//! match completion_response.choice {
//!     ModelChoice::Message(message) => {
//!         // Handle the completion response as a message
//!         println!("Received message: {}", message);
//!     }
//!     ModelChoice::ToolCall(tool_name, tool_params) => {
//!         // Handle the completion response as a tool call
//!         println!("Received tool call: {} {:?}", tool_name, tool_params);
//!     }
//! }
//! ```
//!
//! For more information on how to use the completion functionality, refer to the documentation of
//! the individual traits, structs, and enums defined in this module.
use std::collections::HashMap;

use serde::{Deserialize, Serialize};
use thiserror::Error;

use crate::streaming::{StreamingCompletionModel, StreamingResult};
use crate::OneOrMany;
use crate::{
    json_utils,
    message::{Message, UserContent},
    tool::ToolSetError,
};

use super::message::{AssistantContent, ContentFormat, DocumentMediaType};

// Errors
#[derive(Debug, Error)]
pub enum CompletionError {
    /// Http error (e.g.: connection error, timeout, etc.)
    #[error("HttpError: {0}")]
    HttpError(#[from] reqwest::Error),

    /// Json error (e.g.: serialization, deserialization)
    #[error("JsonError: {0}")]
    JsonError(#[from] serde_json::Error),

    /// Error building the completion request
    #[error("RequestError: {0}")]
    RequestError(#[from] Box<dyn std::error::Error + Send + Sync + 'static>),

    /// Error parsing the completion response
    #[error("ResponseError: {0}")]
    ResponseError(String),

    /// Error returned by the completion model provider
    #[error("ProviderError: {0}")]
    ProviderError(String),
}

#[derive(Debug, Error)]
pub enum PromptError {
    #[error("CompletionError: {0}")]
    CompletionError(#[from] CompletionError),

    #[error("ToolCallError: {0}")]
    ToolError(#[from] ToolSetError),

    #[error("MaxDepthError: (reached limit: {max_depth})")]
    MaxDepthError {
        max_depth: usize,
        chat_history: Vec<Message>,
        prompt: Message,
    },
}

#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct Document {
    pub id: String,
    pub text: String,
    #[serde(flatten)]
    pub additional_props: HashMap<String, String>,
}

impl std::fmt::Display for Document {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            concat!("<file id: {}>\n", "{}\n", "</file>\n"),
            self.id,
            if self.additional_props.is_empty() {
                self.text.clone()
            } else {
                let mut sorted_props = self.additional_props.iter().collect::<Vec<_>>();
                sorted_props.sort_by(|a, b| a.0.cmp(b.0));
                let metadata = sorted_props
                    .iter()
                    .map(|(k, v)| format!("{}: {:?}", k, v))
                    .collect::<Vec<_>>()
                    .join(" ");
                format!("<metadata {} />\n{}", metadata, self.text)
            }
        )
    }
}

#[derive(Clone, Debug, Deserialize, Serialize)]
pub struct ToolDefinition {
    pub name: String,
    pub description: String,
    pub parameters: serde_json::Value,
}

// ================================================================
// Implementations
// ================================================================
/// Trait defining a high-level LLM simple prompt interface (i.e.: prompt in, response out).
pub trait Prompt: Send + Sync {
    /// Send a simple prompt to the underlying completion model.
    ///
    /// If the completion model's response is a message, then it is returned as a string.
    ///
    /// If the completion model's response is a tool call, then the tool is called and
    /// the result is returned as a string.
    ///
    /// If the tool does not exist, or the tool call fails, then an error is returned.
    fn prompt(
        &self,
        prompt: impl Into<Message> + Send,
    ) -> impl std::future::IntoFuture<Output = Result<String, PromptError>, IntoFuture: Send>;
}

/// Trait defining a high-level LLM chat interface (i.e.: prompt and chat history in, response out).
pub trait Chat: Send + Sync {
    /// Send a prompt with optional chat history to the underlying completion model.
    ///
    /// If the completion model's response is a message, then it is returned as a string.
    ///
    /// If the completion model's response is a tool call, then the tool is called and the result
    /// is returned as a string.
    ///
    /// If the tool does not exist, or the tool call fails, then an error is returned.
    fn chat(
        &self,
        prompt: impl Into<Message> + Send,
        chat_history: Vec<Message>,
    ) -> impl std::future::IntoFuture<Output = Result<String, PromptError>, IntoFuture: Send>;
}

/// Trait defining a low-level LLM completion interface
pub trait Completion<M: CompletionModel> {
    /// Generates a completion request builder for the given `prompt` and `chat_history`.
    /// This function is meant to be called by the user to further customize the
    /// request at prompt time before sending it.
    ///
    /// ❗IMPORTANT: The type that implements this trait might have already
    /// populated fields in the builder (the exact fields depend on the type).
    /// For fields that have already been set by the model, calling the corresponding
    /// method on the builder will overwrite the value set by the model.
    ///
    /// For example, the request builder returned by [`Agent::completion`](crate::agent::Agent::completion) will already
    /// contain the `preamble` provided when creating the agent.
    fn completion(
        &self,
        prompt: impl Into<Message> + Send,
        chat_history: Vec<Message>,
    ) -> impl std::future::Future<Output = Result<CompletionRequestBuilder<M>, CompletionError>> + Send;
}

/// General completion response struct that contains the high-level completion choice
/// and the raw response. The completion choice contains one or more assistant content.
#[derive(Debug)]
pub struct CompletionResponse<T> {
    /// The completion choice (represented by one or more assistant message content)
    /// returned by the completion model provider
    pub choice: OneOrMany<AssistantContent>,
    /// The raw response returned by the completion model provider
    pub raw_response: T,
}

/// Trait defining a completion model that can be used to generate completion responses.
/// This trait is meant to be implemented by the user to define a custom completion model,
/// either from a third party provider (e.g.: OpenAI) or a local model.
pub trait CompletionModel: Clone + Send + Sync {
    /// The raw response type returned by the underlying completion model.
    type Response: Send + Sync;

    /// Generates a completion response for the given completion request.
    fn completion(
        &self,
        request: CompletionRequest,
    ) -> impl std::future::Future<Output = Result<CompletionResponse<Self::Response>, CompletionError>>
           + Send;

    /// Generates a completion request builder for the given `prompt`.
    fn completion_request(&self, prompt: impl Into<Message>) -> CompletionRequestBuilder<Self> {
        CompletionRequestBuilder::new(self.clone(), prompt)
    }
}

/// Struct representing a general completion request that can be sent to a completion model provider.
pub struct CompletionRequest {
    /// The preamble to be sent to the completion model provider
    pub preamble: Option<String>,
    /// The chat history to be sent to the completion model provider
    /// The very last message will always be the prompt (hense why there is *always* one)
    pub chat_history: OneOrMany<Message>,
    /// The documents to be sent to the completion model provider
    pub documents: Vec<Document>,
    /// The tools to be sent to the completion model provider
    pub tools: Vec<ToolDefinition>,
    /// The temperature to be sent to the completion model provider
    pub temperature: Option<f64>,
    /// The max tokens to be sent to the completion model provider
    pub max_tokens: Option<u64>,
    /// Additional provider-specific parameters to be sent to the completion model provider
    pub additional_params: Option<serde_json::Value>,
}

impl CompletionRequest {
    /// Returns documents normalized into a message (if any).
    /// Most providers do not accept documents directly as input, so it needs to convert into a
    ///  `Message` so that it can be incorperated into `chat_history` as a
    pub fn normalized_documents(&self) -> Option<Message> {
        if self.documents.is_empty() {
            return None;
        }

        // Most providers will convert documents into a text unless it can handle document messages.
        // We use `UserContent::document` for those who handle it directly!
        let messages = self
            .documents
            .iter()
            .map(|doc| {
                UserContent::document(
                    doc.to_string(),
                    // In the future, we can customize `Document` to pass these extra types through.
                    // Most providers ditch these but they might want to use them.
                    Some(ContentFormat::String),
                    Some(DocumentMediaType::TXT),
                )
            })
            .collect::<Vec<_>>();

        Some(Message::User {
            content: OneOrMany::many(messages).expect("There will be atleast one document"),
        })
    }
}

/// Builder struct for constructing a completion request.
///
/// Example usage:
/// ```rust
/// use rig::{
///     providers::openai::{Client, self},
///     completion::CompletionRequestBuilder,
/// };
///
/// let openai = Client::new("your-openai-api-key");
/// let model = openai.completion_model(openai::GPT_4O).build();
///
/// // Create the completion request and execute it separately
/// let request = CompletionRequestBuilder::new(model, "Who are you?".to_string())
///     .preamble("You are Marvin from the Hitchhiker's Guide to the Galaxy.".to_string())
///     .temperature(0.5)
///     .build();
///
/// let response = model.completion(request)
///     .await
///     .expect("Failed to get completion response");
/// ```
///
/// Alternatively, you can execute the completion request directly from the builder:
/// ```rust
/// use rig::{
///     providers::openai::{Client, self},
///     completion::CompletionRequestBuilder,
/// };
///
/// let openai = Client::new("your-openai-api-key");
/// let model = openai.completion_model(openai::GPT_4O).build();
///
/// // Create the completion request and execute it directly
/// let response = CompletionRequestBuilder::new(model, "Who are you?".to_string())
///     .preamble("You are Marvin from the Hitchhiker's Guide to the Galaxy.".to_string())
///     .temperature(0.5)
///     .send()
///     .await
///     .expect("Failed to get completion response");
/// ```
///
/// Note: It is usually unnecessary to create a completion request builder directly.
/// Instead, use the [CompletionModel::completion_request] method.
pub struct CompletionRequestBuilder<M: CompletionModel> {
    model: M,
    prompt: Message,
    preamble: Option<String>,
    chat_history: Vec<Message>,
    documents: Vec<Document>,
    tools: Vec<ToolDefinition>,
    temperature: Option<f64>,
    max_tokens: Option<u64>,
    additional_params: Option<serde_json::Value>,
}

impl<M: CompletionModel> CompletionRequestBuilder<M> {
    pub fn new(model: M, prompt: impl Into<Message>) -> Self {
        Self {
            model,
            prompt: prompt.into(),
            preamble: None,
            chat_history: Vec::new(),
            documents: Vec::new(),
            tools: Vec::new(),
            temperature: None,
            max_tokens: None,
            additional_params: None,
        }
    }

    /// Sets the preamble for the completion request.
    pub fn preamble(mut self, preamble: String) -> Self {
        self.preamble = Some(preamble);
        self
    }

    /// Adds a message to the chat history for the completion request.
    pub fn message(mut self, message: Message) -> Self {
        self.chat_history.push(message);
        self
    }

    /// Adds a list of messages to the chat history for the completion request.
    pub fn messages(self, messages: Vec<Message>) -> Self {
        messages
            .into_iter()
            .fold(self, |builder, msg| builder.message(msg))
    }

    /// Adds a document to the completion request.
    pub fn document(mut self, document: Document) -> Self {
        self.documents.push(document);
        self
    }

    /// Adds a list of documents to the completion request.
    pub fn documents(self, documents: Vec<Document>) -> Self {
        documents
            .into_iter()
            .fold(self, |builder, doc| builder.document(doc))
    }

    /// Adds a tool to the completion request.
    pub fn tool(mut self, tool: ToolDefinition) -> Self {
        self.tools.push(tool);
        self
    }

    /// Adds a list of tools to the completion request.
    pub fn tools(self, tools: Vec<ToolDefinition>) -> Self {
        tools
            .into_iter()
            .fold(self, |builder, tool| builder.tool(tool))
    }

    /// Adds additional parameters to the completion request.
    /// This can be used to set additional provider-specific parameters. For example,
    /// Cohere's completion models accept a `connectors` parameter that can be used to
    /// specify the data connectors used by Cohere when executing the completion
    /// (see `examples/cohere_connectors.rs`).
    pub fn additional_params(mut self, additional_params: serde_json::Value) -> Self {
        match self.additional_params {
            Some(params) => {
                self.additional_params = Some(json_utils::merge(params, additional_params));
            }
            None => {
                self.additional_params = Some(additional_params);
            }
        }
        self
    }

    /// Sets the additional parameters for the completion request.
    /// This can be used to set additional provider-specific parameters. For example,
    /// Cohere's completion models accept a `connectors` parameter that can be used to
    /// specify the data connectors used by Cohere when executing the completion
    /// (see `examples/cohere_connectors.rs`).
    pub fn additional_params_opt(mut self, additional_params: Option<serde_json::Value>) -> Self {
        self.additional_params = additional_params;
        self
    }

    /// Sets the temperature for the completion request.
    pub fn temperature(mut self, temperature: f64) -> Self {
        self.temperature = Some(temperature);
        self
    }

    /// Sets the temperature for the completion request.
    pub fn temperature_opt(mut self, temperature: Option<f64>) -> Self {
        self.temperature = temperature;
        self
    }

    /// Sets the max tokens for the completion request.
    /// Note: This is required if using Anthropic
    pub fn max_tokens(mut self, max_tokens: u64) -> Self {
        self.max_tokens = Some(max_tokens);
        self
    }

    /// Sets the max tokens for the completion request.
    /// Note: This is required if using Anthropic
    pub fn max_tokens_opt(mut self, max_tokens: Option<u64>) -> Self {
        self.max_tokens = max_tokens;
        self
    }

    /// Builds the completion request.
    pub fn build(self) -> CompletionRequest {
        let chat_history = OneOrMany::many([self.chat_history, vec![self.prompt]].concat())
            .expect("There will always be atleast the prompt");

        CompletionRequest {
            preamble: self.preamble,
            chat_history,
            documents: self.documents,
            tools: self.tools,
            temperature: self.temperature,
            max_tokens: self.max_tokens,
            additional_params: self.additional_params,
        }
    }

    /// Sends the completion request to the completion model provider and returns the completion response.
    pub async fn send(self) -> Result<CompletionResponse<M::Response>, CompletionError> {
        let model = self.model.clone();
        model.completion(self.build()).await
    }
}

impl<M: StreamingCompletionModel> CompletionRequestBuilder<M> {
    /// Stream the completion request
    pub async fn stream(self) -> Result<StreamingResult, CompletionError> {
        let model = self.model.clone();
        model.stream(self.build()).await
    }
}

#[cfg(test)]
mod tests {

    use super::*;

    #[test]
    fn test_document_display_without_metadata() {
        let doc = Document {
            id: "123".to_string(),
            text: "This is a test document.".to_string(),
            additional_props: HashMap::new(),
        };

        let expected = "<file id: 123>\nThis is a test document.\n</file>\n";
        assert_eq!(format!("{}", doc), expected);
    }

    #[test]
    fn test_document_display_with_metadata() {
        let mut additional_props = HashMap::new();
        additional_props.insert("author".to_string(), "John Doe".to_string());
        additional_props.insert("length".to_string(), "42".to_string());

        let doc = Document {
            id: "123".to_string(),
            text: "This is a test document.".to_string(),
            additional_props,
        };

        let expected = concat!(
            "<file id: 123>\n",
            "<metadata author: \"John Doe\" length: \"42\" />\n",
            "This is a test document.\n",
            "</file>\n"
        );
        assert_eq!(format!("{}", doc), expected);
    }

    #[test]
    fn test_normalize_documents_with_documents() {
        let doc1 = Document {
            id: "doc1".to_string(),
            text: "Document 1 text.".to_string(),
            additional_props: HashMap::new(),
        };

        let doc2 = Document {
            id: "doc2".to_string(),
            text: "Document 2 text.".to_string(),
            additional_props: HashMap::new(),
        };

        let request = CompletionRequest {
            preamble: None,
            chat_history: OneOrMany::one("What is the capital of France?".into()),
            documents: vec![doc1, doc2],
            tools: Vec::new(),
            temperature: None,
            max_tokens: None,
            additional_params: None,
        };

        let expected = Message::User {
            content: OneOrMany::many(vec![
                UserContent::document(
                    "<file id: doc1>\nDocument 1 text.\n</file>\n".to_string(),
                    Some(ContentFormat::String),
                    Some(DocumentMediaType::TXT),
                ),
                UserContent::document(
                    "<file id: doc2>\nDocument 2 text.\n</file>\n".to_string(),
                    Some(ContentFormat::String),
                    Some(DocumentMediaType::TXT),
                ),
            ])
            .expect("There will be at least one document"),
        };

        assert_eq!(request.normalized_documents(), Some(expected));
    }

    #[test]
    fn test_normalize_documents_without_documents() {
        let request = CompletionRequest {
            preamble: None,
            chat_history: OneOrMany::one("What is the capital of France?".into()),
            documents: Vec::new(),
            tools: Vec::new(),
            temperature: None,
            max_tokens: None,
            additional_params: None,
        };

        assert_eq!(request.normalized_documents(), None);
    }
}