Struct rhit::File1.0.0[][src]

pub struct File { /* fields omitted */ }

A reference to an open file on the filesystem.

An instance of a File can be read and/or written depending on what options it was opened with. Files also implement Seek to alter the logical cursor that the file contains internally.

Files are automatically closed when they go out of scope. Errors detected on closing are ignored by the implementation of Drop. Use the method sync_all if these errors must be manually handled.

Examples

Creates a new file and write bytes to it (you can also use write()):

use std::fs::File;
use std::io::prelude::*;

fn main() -> std::io::Result<()> {
    let mut file = File::create("foo.txt")?;
    file.write_all(b"Hello, world!")?;
    Ok(())
}

Read the contents of a file into a String (you can also use read):

use std::fs::File;
use std::io::prelude::*;

fn main() -> std::io::Result<()> {
    let mut file = File::open("foo.txt")?;
    let mut contents = String::new();
    file.read_to_string(&mut contents)?;
    assert_eq!(contents, "Hello, world!");
    Ok(())
}

It can be more efficient to read the contents of a file with a buffered Reader. This can be accomplished with BufReader<R>:

use std::fs::File;
use std::io::BufReader;
use std::io::prelude::*;

fn main() -> std::io::Result<()> {
    let file = File::open("foo.txt")?;
    let mut buf_reader = BufReader::new(file);
    let mut contents = String::new();
    buf_reader.read_to_string(&mut contents)?;
    assert_eq!(contents, "Hello, world!");
    Ok(())
}

Note that, although read and write methods require a &mut File, because of the interfaces for Read and Write, the holder of a &File can still modify the file, either through methods that take &File or by retrieving the underlying OS object and modifying the file that way. Additionally, many operating systems allow concurrent modification of files by different processes. Avoid assuming that holding a &File means that the file will not change.

Implementations

impl File[src]

pub fn open<P>(path: P) -> Result<File, Error> where
    P: AsRef<Path>, 
[src]

Attempts to open a file in read-only mode.

See the OpenOptions::open method for more details.

Errors

This function will return an error if path does not already exist. Other errors may also be returned according to OpenOptions::open.

Examples

use std::fs::File;

fn main() -> std::io::Result<()> {
    let mut f = File::open("foo.txt")?;
    Ok(())
}

pub fn create<P>(path: P) -> Result<File, Error> where
    P: AsRef<Path>, 
[src]

Opens a file in write-only mode.

This function will create a file if it does not exist, and will truncate it if it does.

See the OpenOptions::open function for more details.

Examples

use std::fs::File;

fn main() -> std::io::Result<()> {
    let mut f = File::create("foo.txt")?;
    Ok(())
}

pub fn with_options() -> OpenOptions[src]

🔬 This is a nightly-only experimental API. (with_options)

Returns a new OpenOptions object.

This function returns a new OpenOptions object that you can use to open or create a file with specific options if open() or create() are not appropriate.

It is equivalent to OpenOptions::new() but allows you to write more readable code. Instead of OpenOptions::new().read(true).open("foo.txt") you can write File::with_options().read(true).open("foo.txt"). This also avoids the need to import OpenOptions.

See the OpenOptions::new function for more details.

Examples

#![feature(with_options)]
use std::fs::File;

fn main() -> std::io::Result<()> {
    let mut f = File::with_options().read(true).open("foo.txt")?;
    Ok(())
}

pub fn sync_all(&self) -> Result<(), Error>[src]

Attempts to sync all OS-internal metadata to disk.

This function will attempt to ensure that all in-memory data reaches the filesystem before returning.

This can be used to handle errors that would otherwise only be caught when the File is closed. Dropping a file will ignore errors in synchronizing this in-memory data.

Examples

use std::fs::File;
use std::io::prelude::*;

fn main() -> std::io::Result<()> {
    let mut f = File::create("foo.txt")?;
    f.write_all(b"Hello, world!")?;

    f.sync_all()?;
    Ok(())
}

pub fn sync_data(&self) -> Result<(), Error>[src]

This function is similar to sync_all, except that it may not synchronize file metadata to the filesystem.

This is intended for use cases that must synchronize content, but don't need the metadata on disk. The goal of this method is to reduce disk operations.

Note that some platforms may simply implement this in terms of sync_all.

Examples

use std::fs::File;
use std::io::prelude::*;

fn main() -> std::io::Result<()> {
    let mut f = File::create("foo.txt")?;
    f.write_all(b"Hello, world!")?;

    f.sync_data()?;
    Ok(())
}

pub fn set_len(&self, size: u64) -> Result<(), Error>[src]

Truncates or extends the underlying file, updating the size of this file to become size.

If the size is less than the current file's size, then the file will be shrunk. If it is greater than the current file's size, then the file will be extended to size and have all of the intermediate data filled in with 0s.

The file's cursor isn't changed. In particular, if the cursor was at the end and the file is shrunk using this operation, the cursor will now be past the end.

Errors

This function will return an error if the file is not opened for writing. Also, std::io::ErrorKind::InvalidInput will be returned if the desired length would cause an overflow due to the implementation specifics.

Examples

use std::fs::File;

fn main() -> std::io::Result<()> {
    let mut f = File::create("foo.txt")?;
    f.set_len(10)?;
    Ok(())
}

Note that this method alters the content of the underlying file, even though it takes &self rather than &mut self.

pub fn metadata(&self) -> Result<Metadata, Error>[src]

Queries metadata about the underlying file.

Examples

use std::fs::File;

fn main() -> std::io::Result<()> {
    let mut f = File::open("foo.txt")?;
    let metadata = f.metadata()?;
    Ok(())
}

pub fn try_clone(&self) -> Result<File, Error>1.9.0[src]

Creates a new File instance that shares the same underlying file handle as the existing File instance. Reads, writes, and seeks will affect both File instances simultaneously.

Examples

Creates two handles for a file named foo.txt:

use std::fs::File;

fn main() -> std::io::Result<()> {
    let mut file = File::open("foo.txt")?;
    let file_copy = file.try_clone()?;
    Ok(())
}

Assuming there’s a file named foo.txt with contents abcdef\n, create two handles, seek one of them, and read the remaining bytes from the other handle:

use std::fs::File;
use std::io::SeekFrom;
use std::io::prelude::*;

fn main() -> std::io::Result<()> {
    let mut file = File::open("foo.txt")?;
    let mut file_copy = file.try_clone()?;

    file.seek(SeekFrom::Start(3))?;

    let mut contents = vec![];
    file_copy.read_to_end(&mut contents)?;
    assert_eq!(contents, b"def\n");
    Ok(())
}

pub fn set_permissions(&self, perm: Permissions) -> Result<(), Error>1.16.0[src]

Changes the permissions on the underlying file.

Platform-specific behavior

This function currently corresponds to the fchmod function on Unix and the SetFileInformationByHandle function on Windows. Note that, this may change in the future.

Errors

This function will return an error if the user lacks permission change attributes on the underlying file. It may also return an error in other os-specific unspecified cases.

Examples

fn main() -> std::io::Result<()> {
    use std::fs::File;

    let file = File::open("foo.txt")?;
    let mut perms = file.metadata()?.permissions();
    perms.set_readonly(true);
    file.set_permissions(perms)?;
    Ok(())
}

Note that this method alters the permissions of the underlying file, even though it takes &self rather than &mut self.

Trait Implementations

impl AsRawFd for File[src]

impl Debug for File[src]

impl FileExt for File1.15.0[src]

impl FromRawFd for File1.1.0[src]

impl IntoRawFd for File1.4.0[src]

impl<'_> Read for &'_ File[src]

impl Read for File[src]

impl Seek for File[src]

impl<'_> Seek for &'_ File[src]

impl Write for File[src]

impl<'_> Write for &'_ File[src]

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T, A> ExecutableCommand<A> for T where
    T: Write,
    A: Display
[src]

pub fn execute(
    &mut self,
    command: impl Command<AnsiType = A>
) -> Result<&mut T, ErrorKind>
[src]

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

Arguments

  • Command

    The command that you want to execute directly.

Example

use std::io::{Write, stdout};
use crossterm::{Result, ExecutableCommand, style::Print};

 fn main() -> Result<()> {
     // will be executed directly
      stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
 }

Have a look over at the Command API for more details.

Notes

  • In the case of UNIX and Windows 10, ANSI codes are written to the given 'writer'.
  • In case of Windows versions lower than 10, a direct WinApi call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

impl<T> From<T> for T[src]

impl<T> Fun for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<S> IsTty for S where
    S: AsRawFd
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T, A> QueueableCommand<A> for T where
    T: Write,
    A: Display
[src]

pub fn queue(
    &mut self,
    command: impl Command<AnsiType = A>
) -> Result<&mut T, ErrorKind>
[src]

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.

Arguments

  • Command

    The command that you want to queue for later execution.

Examples

use std::io::{Write, stdout};
use crossterm::{Result, QueueableCommand, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

Notes

  • In the case of UNIX and Windows 10, ANSI codes are written to the given 'writer'.
  • In case of Windows versions lower than 10, a direct WinApi call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.