Struct rhit::io::Cursor1.0.0[][src]

pub struct Cursor<T> { /* fields omitted */ }

A Cursor wraps an in-memory buffer and provides it with a Seek implementation.

Cursors are used with in-memory buffers, anything implementing AsRef<[u8]>, to allow them to implement Read and/or Write, allowing these buffers to be used anywhere you might use a reader or writer that does actual I/O.

The standard library implements some I/O traits on various types which are commonly used as a buffer, like Cursor<Vec<u8>> and Cursor<&[u8]>.

Examples

We may want to write bytes to a File in our production code, but use an in-memory buffer in our tests. We can do this with Cursor:

use std::io::prelude::*;
use std::io::{self, SeekFrom};
use std::fs::File;

// a library function we've written
fn write_ten_bytes_at_end<W: Write + Seek>(writer: &mut W) -> io::Result<()> {
    writer.seek(SeekFrom::End(-10))?;

    for i in 0..10 {
        writer.write(&[i])?;
    }

    // all went well
    Ok(())
}

// Here's some code that uses this library function.
//
// We might want to use a BufReader here for efficiency, but let's
// keep this example focused.
let mut file = File::create("foo.txt")?;

write_ten_bytes_at_end(&mut file)?;

// now let's write a test
#[test]
fn test_writes_bytes() {
    // setting up a real File is much slower than an in-memory buffer,
    // let's use a cursor instead
    use std::io::Cursor;
    let mut buff = Cursor::new(vec![0; 15]);

    write_ten_bytes_at_end(&mut buff).unwrap();

    assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
}

Implementations

impl<T> Cursor<T>[src]

pub const fn new(inner: T) -> Cursor<T>

Notable traits for Cursor<T>

impl<T> Read for Cursor<T> where
    T: AsRef<[u8]>, 
impl Write for Cursor<Box<[u8], Global>>impl Write for Cursor<Vec<u8, Global>>impl<'_> Write for Cursor<&'_ mut Vec<u8, Global>>impl<'_> Write for Cursor<&'_ mut [u8]>
[src]

Creates a new cursor wrapping the provided underlying in-memory buffer.

Cursor initial position is 0 even if underlying buffer (e.g., Vec) is not empty. So writing to cursor starts with overwriting Vec content, not with appending to it.

Examples

use std::io::Cursor;

let buff = Cursor::new(Vec::new());

pub fn into_inner(self) -> T[src]

Consumes this cursor, returning the underlying value.

Examples

use std::io::Cursor;

let buff = Cursor::new(Vec::new());

let vec = buff.into_inner();

pub const fn get_ref(&self) -> &T

Notable traits for &'_ mut R

impl<'_, R> Read for &'_ mut R where
    R: Read + ?Sized
impl<'_, W> Write for &'_ mut W where
    W: Write + ?Sized
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized
type Item = <I as Iterator>::Item;
[src]

Gets a reference to the underlying value in this cursor.

Examples

use std::io::Cursor;

let buff = Cursor::new(Vec::new());

let reference = buff.get_ref();

pub fn get_mut(&mut self) -> &mut T

Notable traits for &'_ mut R

impl<'_, R> Read for &'_ mut R where
    R: Read + ?Sized
impl<'_, W> Write for &'_ mut W where
    W: Write + ?Sized
impl<'_, I> Iterator for &'_ mut I where
    I: Iterator + ?Sized
type Item = <I as Iterator>::Item;
[src]

Gets a mutable reference to the underlying value in this cursor.

Care should be taken to avoid modifying the internal I/O state of the underlying value as it may corrupt this cursor's position.

Examples

use std::io::Cursor;

let mut buff = Cursor::new(Vec::new());

let reference = buff.get_mut();

pub const fn position(&self) -> u64[src]

Returns the current position of this cursor.

Examples

use std::io::Cursor;
use std::io::prelude::*;
use std::io::SeekFrom;

let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);

assert_eq!(buff.position(), 0);

buff.seek(SeekFrom::Current(2)).unwrap();
assert_eq!(buff.position(), 2);

buff.seek(SeekFrom::Current(-1)).unwrap();
assert_eq!(buff.position(), 1);

pub fn set_position(&mut self, pos: u64)[src]

Sets the position of this cursor.

Examples

use std::io::Cursor;

let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]);

assert_eq!(buff.position(), 0);

buff.set_position(2);
assert_eq!(buff.position(), 2);

buff.set_position(4);
assert_eq!(buff.position(), 4);

Trait Implementations

impl<T> BufRead for Cursor<T> where
    T: AsRef<[u8]>, 
[src]

impl<T> Clone for Cursor<T> where
    T: Clone
[src]

impl<T> Debug for Cursor<T> where
    T: Debug
[src]

impl<T> Default for Cursor<T> where
    T: Default
[src]

impl<T> Eq for Cursor<T> where
    T: Eq
[src]

impl<T> PartialEq<Cursor<T>> for Cursor<T> where
    T: PartialEq<T>, 
[src]

impl<T> Read for Cursor<T> where
    T: AsRef<[u8]>, 
[src]

impl<T> Seek for Cursor<T> where
    T: AsRef<[u8]>, 
[src]

impl<T> StructuralEq for Cursor<T>[src]

impl<T> StructuralPartialEq for Cursor<T>[src]

impl Write for Cursor<Box<[u8], Global>>1.5.0[src]

impl Write for Cursor<Vec<u8, Global>>[src]

impl<'_> Write for Cursor<&'_ mut Vec<u8, Global>>1.25.0[src]

impl<'_> Write for Cursor<&'_ mut [u8]>[src]

Auto Trait Implementations

impl<T> RefUnwindSafe for Cursor<T> where
    T: RefUnwindSafe
[src]

impl<T> Send for Cursor<T> where
    T: Send
[src]

impl<T> Sync for Cursor<T> where
    T: Sync
[src]

impl<T> Unpin for Cursor<T> where
    T: Unpin
[src]

impl<T> UnwindSafe for Cursor<T> where
    T: UnwindSafe
[src]

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T, A> ExecutableCommand<A> for T where
    T: Write,
    A: Display
[src]

pub fn execute(
    &mut self,
    command: impl Command<AnsiType = A>
) -> Result<&mut T, ErrorKind>
[src]

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

Arguments

  • Command

    The command that you want to execute directly.

Example

use std::io::{Write, stdout};
use crossterm::{Result, ExecutableCommand, style::Print};

 fn main() -> Result<()> {
     // will be executed directly
      stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
 }

Have a look over at the Command API for more details.

Notes

  • In the case of UNIX and Windows 10, ANSI codes are written to the given 'writer'.
  • In case of Windows versions lower than 10, a direct WinApi call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

impl<T> From<T> for T[src]

impl<T> Fun for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Pointable for T

type Init = T

The type for initializers.

impl<T, A> QueueableCommand<A> for T where
    T: Write,
    A: Display
[src]

pub fn queue(
    &mut self,
    command: impl Command<AnsiType = A>
) -> Result<&mut T, ErrorKind>
[src]

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.

Arguments

  • Command

    The command that you want to queue for later execution.

Examples

use std::io::{Write, stdout};
use crossterm::{Result, QueueableCommand, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

Notes

  • In the case of UNIX and Windows 10, ANSI codes are written to the given 'writer'.
  • In case of Windows versions lower than 10, a direct WinApi call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.