1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
#![warn(clippy::all)]
#![warn(missing_docs)]
#![warn(rustdoc::missing_doc_code_examples)]
#![warn(clippy::missing_docs_in_private_items)]
#![doc = include_str!("../README.md")]
//! # Constants
//! This package provides a few constants that are common and useful.
//! ## `pi`
//! The ratio of a circle's circumference to its diameter.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! pi // => 3.141592653589793
//! # ").unwrap();
//! # assert_eq!(result, std::f64::consts::PI);
//! ```
//!
//! ## `e`
//! Euler's number.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! e // => 2.718281828459045
//! # ").unwrap();
//! # assert_eq!(result, std::f64::consts::E);
//! ```
//!
//! ## `g`
//! Acceleration due to gravity on Earth in m/s^2.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! g // => 9.80665
//! # ").unwrap();
//! # assert_eq!(result, 9.80665);
//! ```
//!
//! # Functions
//! This package provides a large variety of functions to help with scientific computing. Each one
//! of these is written in [`Rhai`](https://rhai.rs/) itself! The source code is [here](https://github.com/cmccomb/rhai-sci/tree/master/scripts).
//!
//! ## `argmax`
//! Returns the argument of the largest element in a 1-D array.
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! argmax([43, 42, 500]) // => 2
//! # ").unwrap();
//! # assert_eq!(result, 2);
//! ```
//!
//! ## `argmin`
//! Returns the argument of the smallest element in a 1-D array.
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! argmin([43, 42, -500]) // => 2
//! # ").unwrap();
//! # assert_eq!(result, 2);
//! ```
//!
//! ## `bounds`
//! Returns the bounds (smallest and largest elements) of a 1-D array.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! bounds([32, 15, -7, 10, 1000, 41, 42]) // => [-7, 1000]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<i64>()).collect::<Vec<i64>>(), vec![-7, 1000]);
//! ```
//!
//! ## `diag`
//! This function can be used in two distinct ways.
//! 1. If the argument is an 2-D array, `diag` returns an array containing the diagonal of the array.
//! 2. If the argument is a 1-D array, `diag` returns a matrix containing the argument along the
//! diagonal and zeros elsewhere.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! diag([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) // => [1, 5, 9]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<i64>()).collect::<Vec<i64>>(), vec![1, 5, 9]);
//! ```
//! ```
//! # use rhai::{Array, serde::from_dynamic};
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! diag([1, 2, 3]) // => [[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 3.0]]
//! # ").unwrap();
//! # let vecresult = result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>();
//! # assert_eq!(vecresult, vec![vec![1.0, 0.0, 0.0], vec![0.0, 2.0, 0.0], vec![0.0, 0.0, 3.0]]);
//! ```
//!
//! ## `eye`
//! Create an identity matrix with ones along the diagonal and zeros elsewhere. Can be called with
//! either one argument (creating a square matrix) or two arguments (specifying the number of rows
//! and columns separately).
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! eye(3) // => [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
//! # ").unwrap();
//! # let vecresult = result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>();
//! # let sum: f64 = vecresult.into_iter().map(|x| x.into_iter().sum()).collect::<Vec<f64>>().into_iter().sum();
//! # assert_eq!(sum, 3.0);
//! ```
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! eye(3, 3) // => [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
//! # ").unwrap();
//! # let vecresult = result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>();
//! # let sum: f64 = vecresult.into_iter().map(|x| x.into_iter().sum()).collect::<Vec<f64>>().into_iter().sum();
//! # assert_eq!(sum, 3.0);
//! ```
//!
//! ## `interp1`
//! Given reference data, perform linear interpolation.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! interp1([0, 1], [1, 2], 0.5) // => 1.5
//! # ").unwrap();
//! # assert_eq!(result, 1.5);
//! ```
//!
//! ## `iqr`
//! Returns the inter-quartile range for a 1-D array.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! iqr([1, 1, 1, 1, 1, 1, 1, 5, 6, 9, 9, 9, 9, 9, 9, 9, 9])" // => 8.0
//! # ).unwrap();
//! # assert_eq!(result, 8.0);
//! ```
//!
//! ## `linspace`
//! Returns an array containing a number of elements linearly spaced between two bounds.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! linspace(1, 2, 5) // => [1.0, 1.25, 1.5, 1.75, 2.0]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<f64>()).collect::<Vec<f64>>(), vec![1.0, 1.25, 1.5, 1.75, 2.0]);
//! ```
//!
//! ## `logspace`
//! Returns an array containing a number of elements logarithmically spaced between two bounds.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! logspace(1, 3, 3) // => [10.0, 100.0, 1000.0]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<f64>()).collect::<Vec<f64>>(), vec![10.0, 100.0, 1000.0]);
//! ```
//!
//! ## `max`
//! Returns the highest value between a pair of numbers (if called with two arguments) or in a 1-D
//! array (if called with a single `Array`-type argument).
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! max(41, 42) // => 42
//! # ").unwrap();
//! # assert_eq!(result, 42);
//! ```
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! max([41, 42, -1, 7, 2]) // => 42
//! # ").unwrap();
//! # assert_eq!(result, 42);
//! ```
//!
//! ## `min`
//! Returns the lowest value between a pair of numbers (if called with two arguments) or in a 1-D
//! array (if called with a single `Array`-type argument).
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! min(43, 42) // => 42
//! # ").unwrap();
//! # assert_eq!(result, 42);
//! ```
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! min([43, 42, 500]) // => 42
//! # ").unwrap();
//! # assert_eq!(result, 42);
//! ```
//!
//! ## `maxk`
//! Returns the k highest values from a 1-D array.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! maxk([32, 15, -7, 10, 1000, 41, 42], 3) // => [41, 42, 1000]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<i64>()).collect::<Vec<i64>>(), vec![41, 42, 1000]);
//! ```
//!
//! ## `mean`
//! Returns the average of a 1-D array.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! mean([1, 2, 3]) // => 2.0
//! # ").unwrap();
//! # assert_eq!(result, 2.0);
//! ```
//!
//! ## `median`
//! Returns the median of a 1-D array.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! median([1, 1, 1, 1, 2, 5, 6, 7, 8]) // => 2.0
//! # ").unwrap();
//! # assert_eq!(result, 2.0);
//! ```
//!
//! ## `mink`
//! Returns the k smallest values in a 1-D array.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! mink([32, 15, -7, 10, 1000, 41, 42], 3) // => [-7, 10, 15]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<i64>()).collect::<Vec<i64>>(), vec![-7, 10, 15]);
//! ```
//!
//! ## `mode`
//! Returns the mode of a 1-D array.
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! mode([1, 2, 2, 2, 2, 3]) // => 2
//! # ").unwrap();
//! # assert_eq!(result, 2);
//! ```
//!
//! ## `ndims`
//! Returns the number of dimensions in an array.
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! ndims(ones(4, 6)) // => 2
//! # ").unwrap();
//! # assert_eq!(result, 2);
//! ```
//!
//! ## `numel`
//! Returns the number of elements in an array.
//! ```
//! # use rhai::INT;
//! # use rhai_sci::eval;
//! # let result: INT = eval("
//! numel(ones(4, 6)) // => 24
//! # ").unwrap();
//! # assert_eq!(result, 24);
//! ```
//!
//! ## `ones`
//! Create an matrix filled with ones. Can be called with either one argument (creating a square
//! matrix) or two arguments (specifying the number of rows and columns separately).
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! ones(3) // => [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>(), vec![vec![1.0; 3]; 3]);
//! ```
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! ones(3, 3) // => [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>(), vec![vec![1.0; 3]; 3]);
//! ```
//!
//! ## `prctile`
//! Returns a given percentile value for a 1-D array of data.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! prctile([1, 2, 0, 3, 4], 50) // => 2.0
//! # ").unwrap();
//! # assert_eq!(result, 2.0);
//! ```
//!
//! ## `rand`
//! Create a matrix filled with random values between 0 and 1. Can be called with either zero
//! arguments (returning a single random value), one argument (creating a square matrix) or two
//! arguments (specifying the number of rows and columns separately).
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! rand() // => 0.44392202188914254
//! # ").unwrap();
//! # assert!(result < 1.0 && result > 0.0);
//! ```
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! rand(3) // => [[0.7333405150571339, 0.3597611759299407, 0.8809543481098305], [0.5327545327750203, 0.9185256001032435, 0.7226084132391764], [0.14803039057912748, 0.8924466624235429, 0.40943835774171167]]
//! # ").unwrap();
//! # let vecresult = result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>();
//! # let sum: f64 = vecresult.into_iter().map(|x| x.into_iter().sum()).collect::<Vec<f64>>().into_iter().sum();
//! # assert!(sum < 9.0 && sum > 0.0);
//! ```
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! rand(3, 3) // => [[0.7333405150571339, 0.3597611759299407, 0.8809543481098305], [0.5327545327750203, 0.9185256001032435, 0.7226084132391764], [0.14803039057912748, 0.8924466624235429, 0.40943835774171167]]
//! # ").unwrap();
//! # let vecresult = result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>();
//! # let sum: f64 = vecresult.into_iter().map(|x| x.into_iter().sum()).collect::<Vec<f64>>().into_iter().sum();
//! # assert!(sum < 9.0 && sum > 0.0);
//! ```
//!
//! ## `size`
//! Returns the size along each dimension of an array.
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! size(ones(3, 5)) // => [3, 5]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<i64>()).collect::<Vec<i64>>(), vec![3, 5]);
//! ```
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # let result: Array = eval("
//! size([[[1, 2]]]) // => [1, 1, 2]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(|x|x.cast::<i64>()).collect::<Vec<i64>>(), vec![1, 1, 2]);
//! ```
//!
//! ## `std`
//! Returns the standard deviation of a 1-D array.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! std([1, 2, 3]) // => 1.0
//! # ").unwrap();
//! # assert_eq!(result, 1.0);
//! ```
//!
//! ## `variance`
//! Returns the variance of a 1-D array.
//! ```
//! # use rhai::FLOAT;
//! # use rhai_sci::eval;
//! # let result: FLOAT = eval("
//! variance([1, 2, 3]) // => 1.0
//! # ").unwrap();
//! # assert_eq!(result, 1.0);
//! ```
//!
//! ## `zeros`
//! Create an matrix filled with ones. Can be called with either one argument (creating a square
//! matrix) or two arguments (specifying the number of rows and columns separately).
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! zeros(3) // => [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>(), vec![vec![0.0; 3]; 3]);
//! ```
//! ```
//! # use rhai::Array;
//! # use rhai_sci::eval;
//! # use rhai::serde::from_dynamic;
//! # let result: Array = eval("
//! zeros(3, 3) // => [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
//! # ").unwrap();
//! # assert_eq!(result.into_iter().map(
//! # |x| from_dynamic(&x).unwrap()
//! # ).collect::<Vec<Vec<f64>>>(), vec![vec![0.0; 3]; 3]);
//! ```
//!
use rhai::{def_package, packages::Package, plugin::*, Array, EvalAltResult, Position, FLOAT, INT};
use rhai_rand::RandomPackage;
use std::ops::{Range, RangeInclusive};
def_package! {
/// Package for scientific computing
pub SciPackage(lib) {
RandomPackage::init(lib);
//
let engine = Engine::new();
let ast = engine.compile(aggregate_functions()).unwrap();
let my_module = Module::eval_ast_as_new(rhai::Scope::new(), &ast, &engine).unwrap();
lib.fill_with(&my_module);
// combine_with_exported_module!(lib, "rand", rand_functions);
}
}
// #[export_module]
// mod rand_functions {
// //! Generate a random boolean value with a probability of being `true`.
// //!
// //! `probability` must be between `0.0` and `1.0` (inclusive).
// //!
// //! # Example
// //!
// //! ```rhai
// //! let decision = rand(0.01); // 1% probability
// //!
// //! if decision {
// //! print("You hit the Jackpot!")
// //! }
// //! ```
// #[rhai_fn(return_raw)]
// pub fn rand_bool_with_probability(probability: FLOAT) -> Result<bool, Box<EvalAltResult>> {
// if probability < 0.0 || probability > 1.0 {
// Err(EvalAltResult::ErrorArithmetic(
// format!(
// "Invalid probability (must be between 0.0 and 1.0): {}",
// probability
// ),
// Position::NONE,
// )
// .into())
// } else {
// Ok(rand::thread_rng().gen_bool(probability as f64))
// }
// }
// }
fn aggregate_functions() -> String {
String::new()
+ include_str!("../scripts/max.rhai")
+ include_str!("../scripts/maxk.rhai")
+ include_str!("../scripts/argmax.rhai")
+ include_str!("../scripts/min.rhai")
+ include_str!("../scripts/argmin.rhai")
+ include_str!("../scripts/eye.rhai")
+ include_str!("../scripts/mink.rhai")
+ include_str!("../scripts/diag.rhai")
+ include_str!("../scripts/bounds.rhai")
+ include_str!("../scripts/size.rhai")
+ include_str!("../scripts/mean.rhai")
+ include_str!("../scripts/numel.rhai")
+ include_str!("../scripts/ndims.rhai")
+ include_str!("../scripts/variance.rhai")
+ include_str!("../scripts/std.rhai")
+ include_str!("../scripts/mode.rhai")
+ include_str!("../scripts/median.rhai")
+ include_str!("../scripts/iqr.rhai")
+ include_str!("../scripts/prctile.rhai")
+ include_str!("../scripts/interp1.rhai")
+ include_str!("../scripts/linspace.rhai")
+ include_str!("../scripts/logspace.rhai")
+ include_str!("../scripts/zeros.rhai")
+ include_str!("../scripts/ones.rhai")
+ include_str!("../scripts/myrand.rhai")
+ include_str!("../scripts/constants.rhai")
}
/// This provides the ability to easily evaluate a line (or lines) of code without explicitly
/// setting up a script engine
/// ```
/// use rhai_sci::eval;
/// use rhai::FLOAT;
/// print!("{:?}", eval::<FLOAT>("let x = max(5, 2); x + min(3, 72)"));
/// ```
pub fn eval<T: Clone + 'static>(script: &str) -> Result<T, Box<EvalAltResult>> {
let mut engine = Engine::new();
engine.register_global_module(SciPackage::new().as_shared_module());
engine.eval::<T>(script)
}