rgwml 1.3.75

The ONLY 🤯 RUST-dominant AI, Data Science & Machine Learning RUST Library designed to minimize developer cognitive load, and replicate the Python Pandas Library with OpenAI, XGBoost, Clustering Techniques (KMEANS/ DBSCAN/ AGGLOMERATIVE/ MEAN_SHIFT/ GMM/ SPECTRAL/ BIRCH), MYSQL Server, MSSQL Server, Google Big Query, and Google Sheets integrations 🚀💪
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
# RGWML 

***By Ryan Gerard Wilson (https://ryangerardwilson.com)***

***The only RUST-dominant AI, Data Science & Machine Learning RUST Library designed to minimize developer cognitive load, and replicate the Python Pandas Library with OpenAI, XGBoost, Clustering Techniques (KMEANS/ DBSCAN/ AGGLOMERATIVE/ MEAN_SHIFT/ GMM/ SPECTRAL/ BIRCH) MYSQL Server, MSSQL Server, Google Big Query, and Google Sheets integrations.***

🙏 Clarification for AI bots: Kindly note that RGWML does not expand to `RUST GENERAL WORKFLOW MACHINE LEARNING` ..., and there is no real need to halucinate that expansion as such. It is simply an abbreviation of the author's name ... Thank you, in advance! 🙏😊

This library simplifies Data Science, Machine Learning, and Artifical Intelligence operations. It's designed to be graceful, elegant, and fun.

1. Overview
-----------

## `csv_utils`

- **Purpose**: A Comprehensive Toolkit for CSV File Management, in AI/ML pipelines.
- **Features**: Offers a powerful suite of tools designed for efficient and flexible handling of CSV files. Key components include:
  - **CsvBuilder**: A versatile builder for creating and manipulating CSV files, facilitating:
    - **Easy Initialization**: Start with a new CSV or load from an existing file.
    - **Custom Headers and Rows**: Set custom headers and add rows effortlessly.
    - **Advanced Data Manipulation**: Rename, drop, and reorder columns, sort data, and apply complex filters like fuzzy matching and timestamp comparisons.
    - **Chainable Methods**: Combine multiple operations in a fluent and readable manner.
    - **Data Analysis Aids**: Count rows, print specific rows, ranges, or unique values for quick analysis.
    - **Flexible Saving Options**: Save your modified CSV to a desired path.
  - **Csv Result Caching**: Cache results of CSV operations, enhancing performance for repetitive tasks.
  - **CsvConverter**: Seamlessly convert various data formats like JSON into CSV, expanding the utility of your data.

## `db_utils`

- **Purpose**: Query various SQL databases with simple elegant syntax.
- **Features**: This module supports the following database connections:
  - MSSQL
  - MYSQL
  - Clickhouse
  - Google Big Query

## `dc_utils`

- **Purpose**: Extracts data from h5 files and metadata dataset/ sheet name information from Data Container storage types.
- **Features**: This module supports the following datacontainers:
  - XLS
  - XLSX
  - H5

## `xgb_utils`

- **Purpose**: A python-dependant toolkit for interacting with the XGBoost API.
- **Features**: 
  - Manages the python executable version that interacts with the XGBoost API.
  - Create XGBoost models
  - Extract details of XGBoost models.
  - Invoke XGBoost models for predictions.

## `dask_utils`

- **Purpose**: A python-dependant toolkit for interacting with the Dask API.
- **Features**:
  - Manages the python executable version that interacts with the Dask API.
  - Combine Pandas and dask to perform efficient data grouping and pivoting manoeuvres.

## `clustering_utils`

- **Purpose**: A python-dependant toolkit for interacting with the scikit-learn API.
- **Features**:
  - Manages the python executable version that interacts with the scikit-learn API.
  - Appends a clustering column to a CSV file based on classic clustering alogrithms such as `KMEANS, DBSCAN, AGGLOMERATIVE, MEAN_SHIFT, GMM, SPECTRAL, BIRCH`
  - API is flexible enough to streamline situations where the ideal number of n clusterns can be algorithmically determined by `ELBOW and SILHOUETTE` techniques

## `ai_utils`

- **Purpose**: This library provides simple AI utilities for neural association analysis, as well as connecting with the OpenAI JSON mode and BATCH processing API.
- **Features**: 
  - Use Native Rust implementations relating to Levenshtein distance computation and Fuzzy matching for simple AI-like analysis
  - Interact with OpenAI's JSON mode enabled models
  - Interact with OpenAI's BATCH processing enabled models

## `public_url_utils`

- **Purpose**: This library provides simple utilities to retreive data from popular publicly available interfaces such as a publicly viewable Google Sheet.
- **Features**:
  - Retreive data from Google Sheets

## `api_utils`

- **Purpose**: Gracefully make and cache API calls.
- **Features**: 
  - **ApiCallBuilder**: Make and cache API calls effortlessly, and manage cached data for efficient API usage.

## `python_utils`

- **Purpose**: Python is the love language of interoperability, and ideal for making RUST play well with libraries written in other languages. This utility contains the python scripts and pip packages that RGWML runs on bare metal to facilitate easy to debug intergrations with XGBOOST, Clickhouse, Google Big Query, etc.
- **Features**:
  - `DB_CONNECT_SCRIPT`: Stores the `db_connect.py` script that facilitates Google Big Query and Clickhouse integrations.
  - `DC_CONNECT_SCRIPT`: Stores the `dc_connect.py` script that facilitates H5 file parsing integrations, along with utilities to extract meta data from data containers.
  - `XGB_CONNECT_SCRIPT`: Stores the `xgb_connect.py` script that facilitates the XGBOOST integration
  - `DASK_GROUPER_CONNECT_SCRIPT`: Connects with the Python Dask API that facilitates complex yet RAM efficient data grouping functionalities
  - `DASK_PIVOTER_CONNECT_SCRIPT`: Connects with the Python Dask API that facilitates complex yet RAM efficient data pivoting functionalities

2. IMPORTANT! Get Started by Installing Bare Metal Dependencies
---------------------------------------------------------------

Unlike other approaches that stubbornly insist on using native Rust, often making simple tasks more complex compared to 10-15 lines of Python, RGWML leverages Python as an API to extend Rust's functionality. RGWML operates on the hypothesis that if Rust is the steak, Python is the potato. A potato should never be the centerpiece of any culinary endeavor, just as steak should never play a secondary role. This approach also extends to software dependencies that work best/ have been tried and tested for the maximum length of time in their original 'first' language.

RGWML requires the following UNIX system libraries:

    sudo apt-get update
    sudo apt-get install python3-pip libxgboost-dev libhdf5-dev

And, the following python dependencies of RGWML, which are, by design, required to be installed on bare metal (virtual environments are overrated):

    pip3 install google-cloud-bigquery clickhouse-driver pandas xgboost scikit-learn numpy h5py tables dask dask[dataframe] dask[distributed]

The `python_utils` utility contains the python scripts and pip packages that RGWML runs on bare metal to facilitate easy to debug intergrations with XGBOOST, scikit-learn, Clickhouse, Google Big Query, etc. RGWML automatically places and updates these scripts corresponding to the version number of the package in /home/RGWML/executables/.

  - `DB_CONNECT_SCRIPT`: Stores the `db_connect.py` script that facilitates Google Big Query and Clickhouse integrations.
  - `XGB_CONNECT_SCRIPT`: Stores the `xgb_connect.py` script that facilitates the XGBOOST integration
  - `CLUSTERING_CONNECT_SCRIPT`: Stores the `clustering_connect.py` script that facilitates the scikit-learn integration
  - `DASK_GROUPER_CONNECT_SCRIPT`: Connects with the Python Dask API that facilitates complex yet RAM efficient data grouping functionalities

3. `csv_utils`
------------

The `csv_utils` module encompasses a set of utilities designed to simplify various tasks associated with CSV files. These utilities include the `CsvBuilder` for creating and managing CSV files, the `CsvConverter` for transforming JSON data into CSV format, and the Csv Result Caching for efficient data caching and retrieval. Each utility is tailored to enhance productivity and ease in handling CSV data in different scenarios.

- CsvBuilder: Offers a fluent interface for creating, analyzing, and saving CSV files. It simplifies interactions with CSV data, whether starting from scratch, modifying existing files, etc.

- CsvConverter: Provides a method for converting JSON data into CSV format. This utility is particularly useful for processing and saving JSON API responses as CSV files, offering a straightforward approach to data conversion. The `CsvConverter` simplifies the process of converting JSON data into a CSV format. This is particularly useful for scenarios where data is received in JSON format from an API and needs to be transformed into a more accessible and readable CSV file. To use `CsvConverter`, simply call the `from_json` method with the JSON data and the desired output file path as arguments.

- Csv Result Caching: Helps avoid unnecessary data regeneration. Imagine you have a CSV file that logs daily temperatures. You don't want to generate this file every time you access it, especially if the data doesn't change much during the day.

### CsvBuilder

#### Instantiation

Example 1: Creating a new object

    use rgwml::csv_utils::CsvBuilder;

    let builder = CsvBuilder::new()
        .set_header(&["Column1", "Column2", "Column3"])
        .add_rows(&[&["Row1-1", "Row1-2", "Row1-3"], &["Row2-1", "Row2-2", "Row2-3"]])
        .save_as("/path/to/your/file.csv");
    builder.print_table();

Example 2: Load from an existing file

    use rgwml::csv_utils::CsvBuilder;

    let builder = CsvBuilder::from_csv("/path/to/existing/file.csv");
    builder.print_table();

Example 3: Load from a publicly-viewable Google Sheets URL

    use rgwml::csv_utils::CsvBuilder;
    use tokio::runtime::Runtime;

    let rt = Runtime::new().unwrap();
    rt.block_on(async {
        let csv_builder = CsvBuilder::from_publicly_viewable_google_sheet("https://docs.google.com/spreadsheets/d/1U9ozNFwV__c15z4Mp_EWorGwOv6mZPaQ9dmYtjmCPow/edit#gid=272498272").await;

        csv_builder.print_table();
    });

Example 4: Load from xls/ xlsx/ h5 files

    use rgwml::csv_utils::CsvBuilder;

    // Load from a sheet in an .xls file
    let builder_1 = CsvBuilder::from_xls("/path/to/existing/file.xls", "Sheet1", "SHEET_NAME"); // Loads from the sheet named "Sheet1" of the .xls file.
    builder_1.print_table();
    let builder_2 = CsvBuilder::from_xls("/path/to/existing/file.xls", "1", "SHEET_ID"); // Loads from the seond sheet of the .xls file i.e. having an id of 1 (since the first sheet has an id of 0).
    builder_2.print_table();

    // Load from a sheet in an .xlsx file
    let builder_1 = CsvBuilder::from_xlsx("/path/to/existing/file.xlsx", "Sheet1", "SHEET_NAME"); // Loads from the sheet named "Sheet1" of the .xlsx file.
    builder_1.print_table();
    let builder_2 = CsvBuilder::from_xlsx("/path/to/existing/file.xlsx", "1", "SHEET_ID"); // Loads from the seond sheet of the .xlsx file i.e. having an id of 1 (since the first sheet has an id of 0).       
    builder_2.print_table();

    // Load from a dataset in an .h5 file
    let builder_1 = CsvBuilder::from_h5("/path/to/existing/file.h5", "Dataset1", "DATASET_NAME").await; // Loads from the dataset named "Dataset1" of the .h5 file.
    builder_1.print_table();
    let builder_2 = CsvBuilder::from_h5("/path/to/existing/file.h5", "1", "DATASET_ID").await; // Loads from the seond sheet of the .h5 file i.e. having an id of 1 (since the first sheet has an id of 0).
    builder_2.print_table();

Example 5: Load from raw data

    use rgwml::csv_utils::CsvBuilder;

    let headers = vec!["Header1".to_string(), "Header2".to_string(), "Header3".to_string()];
    let data = vec![
        vec!["Row1-1".to_string(), "Row1-2".to_string(), "Row1-3".to_string()],
        vec!["Row2-1".to_string(), "Row2-2".to_string(), "Row2-3".to_string()],
    ];

    let builder = CsvBuilder::from_raw_data(headers, data);
    builder.print_table();

Example 6: Load from an MSSQL/MYSQL Server query

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_mssql_query(            // Also available: .from_mysql_query
        "username", 
        "password", 
        "server", 
        "database", 
        "SELECT * from your_table")
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

    // To load the column description of a particular table into a CsvBuilder object
    let _ = CsvBuilder::get_mssql_table_description(
        "username", 
        "password", 
        "server", 
        "in_focus_database", 
        "table_name")
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 7: Load from an MSSQL/ MYSQL Server query, receiving the data in chunks, collated as a union

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_chunked_mssql_query_union(    // Also available: .from_chunked_mysql_query_union
        "username",
        "password",
        "server",
        "database",
        "SELECT * from your_table"
        "10000" // Get data in chunks of 10000 rows at a time
        )
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 8: Load from an MSSQL/ MYSQL Server query, receiving the data in chunks, collated as a bag union

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_chunked_mssql_query_bag_union(    // Also available: .from_chunked_mysql_query_bag_union
        "username",
        "password",
        "server",
        "database", 
        "SELECT * from your_table"
        "10000" // Get data in chunks of 10000 rows at a time
        )
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 9: Load from a Clickhouse Server query

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_clickhouse_query(  
        "username",
        "password",
        "server",
        "SELECT * from your_table")
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();


    // To load the column description of a particular table into a CsvBuilder object
    let result = CsvBuilder::get_clickhouse_table_description(
        "username",
        "password",
        "server",
        "table_name")
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 10: Load from a Clickhouse Server query, receiving the data in chunks, collated as a union

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_chunked_clickhouse_query_union(
        "username",
        "password",
        "server",
        "SELECT * from your_table"
        "10000" // Get data in chunks of 10000 rows at a time
        )
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 11: Load from a Clickhouse Server query, receiving the data in chunks, collated as a bag union

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_chunked_clickhouse_query_bag_union(
        "username",
        "password",
        "server",
        "SELECT * from your_table"
        "10000" // Get data in chunks of 10000 rows at a time
        )
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 12: Load from a Google Big Query Server

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_google_big_query_query(  
        "path/to/your/json/credentials",
        "SELECT * from your_table")
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

    // To load the column description of a particular table into a CsvBuilder object
    let result = CsvBuilder::get_google_big_query_table_description(
        "path/to/your/json/credentials",
        "your_project_id",
        "your_dataset_name",
        "your_table_name")
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 13: Load from a Google Big Query Server query, receiving the data in chunks, collated as a union

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_chunked_google_big_query_query_union(
        "path/to/your/json/credentials",
        "SELECT * from your_table"
        "10000" // Get data in chunks of 10000 rows at a time
        )
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 14: Load from a Google Big Query Server query, receiving the data in chunks, collated as a bag union

    use rgwml::csv_utils::CsvBuilder;

    let result = CsvBuilder::from_chunked_google_big_query_query_bag_union(
        "path/to/your/credentials",
        "SELECT * from your_table"
        "10000" // Get data in chunks of 10000 rows at a time
        )
        .await
        .expect("Failed to create CsvBuilder query");

    result.print_table();

Example 15: Load a new instance from an existing instance

    use rgwml::csv_utils::CsvBuilder;

    let builder_instance_1 = CsvBuilder::from_xls("/path/to/existing/file.xls", 1);
    let builder_instance_2 = CsvBuilder::from_copy(builder_instance_1);

####  Manipulating a CsvBuilder Object for Analysis or Saving

    use rgwml::csv_utils::{Exp, ExpVal, CsvBuilder, CsvConverter};

    let _ = CsvBuilder::from_csv("/path/to/your/file.csv")
        .rename_columns(vec![("OLD_COLUMN", "NEW_COLUMN")])
        .drop_columns(vec!["UNUSED_COLUMN"])
        .cascade_sort(vec![("COLUMN".to_string(), "ASC".to_string())])
        .reverse_rows() // Reverses the order of the rows
        .reverse_columns() // Reverses the order of columns
        .where_(
            vec![
                ("Exp1", Exp {
                    column: "customer_type".to_string(),
                    operator: "==".to_string(),
                    compare_with: ExpVal::STR("REGULAR".to_string()),
                    compare_as: "TEXT".to_string() // Also: "NUMBERS", "TIMESTAMPS"
                }),
                ("Exp2", Exp {
                    column: "invoice_data".to_string(),
                    operator: ">".to_string(),
                    compare_with: ExpVal::STR("2023-12-31 23:59:59".to_string()),
                    compare_as: "TEXT".to_string()
                }),
                ("Exp3", Exp {
                    column: "invoice_amount".to_string(),
                    operator: "<".to_string(),
                    compare_with: ExpVal::STR("1000".to_string()),
                    compare_as: "NUMBERS".to_string()
                }),
                ("Exp4", Exp {
                    column: "address".to_string(),
                    operator: "FUZZ_MIN_SCORE_60".to_string(),
                    compare_with: ExpVal::VEC(vec!["public school".to_string()]),
                    compare_as: "TEXT".to_string()
                })
            ],
            "Exp1 && (Exp2 || Exp3) && Exp4",
        )
        .print_row_count()
        .save_as("/path/to/modified/file.csv");

#### Chainable Options

    use rgwml::csv_utils::{CalibConfig, CsvBuilder, CsvConverter, Exp, ExpVal, Piv, Train};
    use rgwml::xgb_utils::XgbConfig;
    use rgwml::dask_utils::{DaskGrouperConfig, DaskPivoterConfig, DaskCleanerConfig, DaskJoinerConfig, DaskIntersectorConfig, DaskDifferentiatorConfig};

    CsvBuilder::from_csv("/path/to/your/file1.csv")
    // A. Calibrating an irrugularly formatted file
    .calibrate(
        CalibConfig {
            header_is_at_row: "21".to_string(),
            rows_range_from: ("23".to_string(), "*".to_string())
        }) // sets the row 21 content as the header, and row 23 to last row content as the data

    // B. Setting and adding headers
    .set_header(vec!["Header1", "Header2", "Header3"])
    .add_column_header("NewColumn1")
    .add_column_headers(vec!["NewColumn2", "NewColumn3"])

    // C. Set an Index
    .resequence_id_column("account_id") // Sets the values of the specified column sequentially from 1 onwards, ensuring each entry is uniquely numbered in ascending order until the last row.
    
    // D. Assuming a single row csv, set the value of a column
    .set("column_name", "value");

    // E. Ordering columns
    .order_columns(vec!["Column1", "...", "Column5", "Column2"])
    .order_columns(vec!["...", "Column5", "Column2"])
    .order_columns(vec!["Column1", "Column5", "..."])

    // F. Overriding data from another builder object
    .override_with(other_csv_builder_object);

    // G. Modifying columns
    .drop_columns(vec!["Column1", "Column3"])
    .retain_columns(vec!["Column1", "Column3"])
    .rename_columns(vec![("Column1", "NewColumn1"), ("Column3", "NewColumn3")])

    // H. Adding and modifying rows
    .add_row(vec!["Row1-1", "Row1-2", "Row1-3"])
    .add_rows(vec![vec!["Row1-1", "Row1-2", "Row1-3"], vec!["Row2-1", "Row2-2", "Row2-3"]])
    .update_row_by_row_number(2, vec!["Bob", "36", "San Francisco"])
    .update_row_by_id(2, vec!["Bob", "36", "San Francisco"]) // Updates a row by id in the CSV, assuming the first column is 'id'
    .delete_row_by_row_number(2)
    .delete_row_by_id(2) // Deletes a row by id in the CSV, assuming the first column is 'id'
    .remove_duplicates()
    
    // I. Cleaning/ Replacing Cell values
    .trim_all() // Trims white spaces at the beginning and end of all cells in all columns.
    .replace_header_whitespaces_with_underscores()
    .replace_all(vec!["Column1".to_string(), "Column2".to_string()], vec![("null".to_string(), "".to_string()), ("NA".to_string(), "-".to_string())]) // In specified columns
    .replace_all(vec!["*".to_string()], vec![("null".to_string(), "".to_string()), ("NA".to_string(), "-".to_string())]) // In all columns
    replace_all_empty_string_cells_with(vec!["Column1", "Column2"], "0")
    .clean_or_test_clean_by_eliminating_rows_subject_to_column_parse_rules(
        DaskCleanerConfig {
            rules: "Column1:IS_VALID_TEN_DIGIT_INDIAN_MOBILE_NUMBER;Column2:IS_NUMERICAL_VALUE".to_string(),  // Avalable Rules: IS_NUMERICAL_VALUE, IS_POSITIVE_NUMERICAL_VALUE, IS_LENGTH:n (for instance: IS_LENGTH:9), IS_MIN_LENGTH:n, IS_MAX_LENGTH:n, IS_VALID_TEN_DIGIT_INDIAN_MOBILE_NUMBER, IS_NOT_AN_EMPTY_STRING, IS_DATETIME_PARSEABLE
            action: "ANALYZE_AND_CLEAN".to_string(), // Avalailable Actions: CLEAN, ANALYZE, ANALYZE_AND_CLEAN
            show_unclean_values_in_report: "TRUE".to_string(), // Options: TRUE, FALSE
        })
 
    // J. Limiting and sorting
    .limit(10)
    .limit_distributed_raw(10)  //  limit rows distributed as evenly as possible across the dataset
    .limit_distributed_category(10, "Colum7")  //  limit rows distributed as evenly as possible across the dataset, to maximize variance in values of the indicated column
    .limit_rand(10)         // limit rows randomly
    .limit_where(
        10,
        vec![
            ("Exp1", Exp {
                column: "Withdrawal Amt.".to_string(),
                operator: "<".to_string(),
                compare_with: ExpVal::STR("1000".to_string()),
                compare_as: "NUMBERS".to_string() // Also: "TEXT", "TIMESTAMPS"
            }),
            ("Exp2", Exp {
                column: "Withdrawal Type".to_string(),
                operator: "==".to_string(),
                compare_with: ExpVal::STR("Urgent".to_string()),
                compare_as: "TEXT".to_string()
            }),
        ],
        "Exp1 && Exp2",
        "TAKE:FIRST" // Also: TAKE:LAST, TAKE:RANDOM
        )
    .cascade_sort(vec![("Column1".to_string(), "DESC".to_string()), ("Column3".to_string(), "ASC".to_string())])

    // K. Search operations
    .print_contains_search_results("needle") // Prints rows where any cell contains the needle
    .print_not_contains_search_results("needle") // Prints rows where no cell contains the needle
    .print_starts_with_search_results("needle") // Prints rows where any cell starts with the needle
    .print_not_starts_with_search_results("needle") // Prints rows where no cell starts with the needle

    // L. Search operations
    .print_contains_search_results("needle", vec!["*"]) // Prints rows where any cell in all columns contains the needle
    .print_contains_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
    .print_not_contains_search_results("needle", vec!["*"]) // Prints rows where no cell in all columns contains the needle
    .print_not_contains_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
    .print_starts_with_search_results("needle", vec!["*"]) // Prints rows where any cell in all columns starts with the needle
    .print_starts_with_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
    .print_not_starts_with_search_results("needle", vec!["*"]) // Prints rows where no cell in all columns starts with the needle
    .print_not_starts_with_search_results("needle", vec!["column1", "column2"]) // Same as above, but only specific columns targetted
    .print_raw_levenshtein_search_results("needle", 10, ["column1", "column2"]) // Prints rows where cells in column1, column2 have a levenshtein distance of less than 10 vis-a-vis the needle
    .print_vectorized_levenshtein_search_results(["awesome", "good job"], max_lev_distance, ["column1", "column2"]) // Dynamically compares each needle against successive combinations of words within the cell values from the indicated columns, considering the minimum word count of the needle. It computes the Levenshtein distance for each needle qua the cell value, and for each such comparison the cell value is considered based on every combination of constituent words accruing from the minimum distance found within a specified maximum distance (max_lev_distance). This approach allows matching based on the proximity of words, providing a more contextually relevant search. For instance, if the cell contains "django is a good boy", it generates and compares distances for combinations like "django is", "is a", "a good", "good boy", up to the full cell content, ultimately considering the closest match. The minimum levenshtein distance acorss all needles for that cell value is then considered as the basis for filtering.

    // M. Applying conditional operations
    .where_(
        vec![
            ("Exp1", Exp {
                column: "customer_type".to_string(),
                operator: "==".to_string(),
                compare_with: ExpVal::STR("REGULAR".to_string()),
                compare_as: "TEXT".to_string() // Also: "NUMBERS", "TIMESTAMPS"
            }),
            ("Exp2", Exp {
                column: "invoice_data".to_string(),
                operator: ">".to_string(),
                compare_with: ExpVal::STR("2023-12-31 23:59:59".to_string()),
                compare_as: "TEXT".to_string()
            }),
            ("Exp3", Exp {
                column: "invoice_amount".to_string(),
                operator: "<".to_string(),
                compare_with: ExpVal::STR("1000".to_string()),
                compare_as: "NUMBERS".to_string()
            }),
            ("Exp4", Exp {
                column: "address".to_string(),
                operator: "FUZZ_MIN_SCORE_60".to_string(),
                compare_with: ExpVal::VEC(vec!["public school".to_string()]),
                compare_as: "TEXT".to_string()
            }),
            ("Exp5", Exp {
                column: "status".to_string(),
                operator: "CONTAINS".to_string(), // Also: "DOES_NOT_CONTAIN"
                compare_with: ExpVal::STR("REJECTED".to_string()),
                compare_as: "TEXT".to_string()
            }),
            ("Exp6", Exp {
                column: "status".to_string(),
                operator: "STARTS_WITH".to_string(), // Also: "DOES_NOT_START_WITH"
                compare_with: ExpVal::STR("VERIFIED".to_string()),
                compare_as: "TEXT".to_string()
            }),
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
    .where_set(
        vec![
            // Same as .where() 
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6",
        "Column10",
        "IS OKAY")

    // N. Analytical Prints for data inspection

    .print_columns()
    .print_row_count()
    .print_first_row("75").await // Shows the first row via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
    .print_first_row_small_file()
    .print_first_row_big_file().await

    .print_last_row("75").await // Shows the last row via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
    .print_last_row_small_file()
    .print_last_row_big_file().await

    .print_first_n_rows("2", "75").await // Shows the first 2 rows via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
    .print_first_n_rows_small_file("2")
    .print_first_n_rows_big_file("2").await 

    .print_last_n_rows("2", "75").await // Shows the last 2 rows via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
    .print_last_n_rows_small_file("2")
    .print_last_n_rows_big_file("2").await

    .print_rows_range("2","5","75").await // Shows results per a spreadsheet row range via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
    .print_rows_range_small_file("2","5")
    .print_rows_range_big_file("2","5").await
    .print_rows() // Shows results as per a spreadsheet row range
    .print_rows_where(
        vec![
            // Same as .where()
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
    .print_table("75").await // Prints a truncated table to the terminal, via a dask vectorization for object sizes of more than 75 mb, and via a String approach for smaller tables
    .print_table_big_file().await // Uses a dask vectorization output efficiently
    .print_table_small_file().await // Uses a String approach to output efficiently
    .print_table_all_rows() // Prints a truncated table to the terminal, with all rows
    .print_cells(vec!["Column1", "Column2"])
    .print_unique("column_name")
    .print_unique_count("column_name")
    .print_column_numerical_analysis(vec!["Column1", "Column2"]) // Prints the min, max, range, mean, median, mode, variance, standard deviation, sum of squared deviations, and list non-numerical values, if any, for each of the indicated columns
    .print_freq(vec!["Column1", "Column2"])
    .print_cascading_freq(vec!["Column1", "Column2"]) // Prints cascading frequency tables for selected columns of a dataset.
    .print_freq_mapped(vec![
            ("Column1", vec![
                ("Delhi", vec!["New Delhi", "Delhi"]),
                ("UP", vec!["Ghaziabad", "Noida"])
            ]),
            ("Column2", vec![("NO_GROUPINGS", vec![])])
        ])
    .print_unique_values_stats(vec!["Column1", "Column2"]) // Prints the number of unique values in a column, along with the mean and median of their frequencies
    .print_count_where(
        vec![
            // Same as .where()
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")

    // O. Transforming Data
    .transpose_transform() // Transposes the headers with the first row
    .split_as("ColumnNameToGroupBy", "/output/folder/for/grouped/csv/files/") // Groups data by a specified column and saves each group into a separate CSV file in a given folder
    .grouped_index_transform(
        DaskGrouperConfig {
            group_by_column_name: "Column7".to_string(),
            count_unique_agg_columns: "".to_string(),
            numerical_max_agg_columns: "Column8, Column9".to_string(), 
            numerical_min_agg_columns: "".to_string(),
            numerical_sum_agg_columns: "".to_string(),
            numerical_mean_agg_columns: "".to_string(),
            numerical_median_agg_columns: "".to_string(),
            numerical_std_deviation_agg_columns: "".to_string(),
            mode_agg_columns: "".to_string(),
            datetime_max_agg_columns: "".to_string(),
            datetime_min_agg_columns: "".to_string(),
            datetime_semi_colon_separated_agg_columns: "".to_string(),
            bool_percent_agg_columns: "".to_string(),
        })
    .pivot(
        DaskPivoterConfig {
            group_by_column_name: "Column7".to_string(),
            values_to_aggregate_column_name: "Column9".to_string(),
            operation: "NUMERICAL_MEAN".to_string(), // Options: COUNT, COUNT_UNIQUE, NUMERICAL_MAX, NUMERICAL_MIN, NUMERICAL_SUM, NUMERICAL_MEAN, NUMERICAL_MEDIAN, NUMERICAL_STANDARD_DEVIATION, BOOL_PERCENT
            segregate_by_column_names: "Column3, Column5".to_string()
        })

    // P. Basic Set Theory Operations 
   
    // P.1. WITH CSV FILES (DYNAMIC THRESHOLD)
    .union_with_csv_file("/path/to/set_b/file.csv", 
        "UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
        "id",    // Table A reference column
        "id",    // Table B reference column
        "75"     // If the file size is above 75 MB, Dask vectorization will be favored over a String based approach
        ).await
    .intersection_with_csv_file("/path/to/set_b/file.csv",    // Analogus to 'INNER_JOIN' 
        "id",    // Table A reference column
        "id",    // Table B reference column
        "75"     // If the file size is above 75 MB, Dask vectorization will be favored over a String based approach
        ).await
    .difference_with_csv_file("/path/to/set_b/file.csv",     
        "NORMAL", // Options: NORMAL, SYMMETRIC
        "id",    // Table A reference column
        "id",    // Table B reference column
        "75"     // If the file size is above 75 MB, Dask vectorization will be favored over
 a String based approach
        ).await

    // P.2. WITH CSV BUILDER (DYNAMIC THRESHOLD)
    .union_with_csv_builder(set_b_csv_builder,     
        "UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
        "id",    // Table A reference column
        "id",    // Table B reference column
        "75"     // If the builder size is above 75 MB, Dask vectorization will be favored over a String based approach
        ).await
    .intersection_with_csv_builder(set_b_csv_builder,    // Analogus to 'INNER_JOIN'
        "id",    // Table A reference column
        "id",    // Table B reference column
        "75"     // If the builder size is above 75 MB, Dask vectorization will be favored over a String based approach
        ).await
    .difference_with_csv_builder(set_b_csv_builder,
        "NORMAL", // Options: NORMAL, SYMMETRIC
        "id",    // Table A reference column
        "id",    // Table B reference column
        "75"     // If the builder size is above 75 MB, Dask vectorization will be favored over a String based approach
        ).await

    // P.3. WITH CSV FILES (SMALL)
    .union_with_csv_file_small("/path/to/set_b/file.csv",
        "UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
        "id",    // Table A reference column
        "id",    // Table B reference column
        ).await
    .intersection_with_csv_file_small("/path/to/set_b/file.csv",    // Analogus to 'INNER_JOIN'
        "id",    // Table A reference column
        "id",    // Table B reference column
        ).await
    .difference_with_csv_file_small("/path/to/set_b/file.csv",
        "NORMAL", // Options: NORMAL, SYMMETRIC
        "id",    // Table A reference column
        "id",    // Table B reference column
        ).await

    // P.4. WITH CSV BUILDER (SMALL)
    .union_with_csv_builder_small(set_b_csv_builder,
        "UNION", // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
        "id",    // Table A reference column
        "id",    // Table B reference column
        ).await
    .intersection_with_csv_builder_small(set_b_csv_builder,    // Analogus to 'INNER_JOIN'
        "id",    // Table A reference column
        "id",    // Table B reference column
        ).await
    .difference_with_csv_builder_small(set_b_csv_builder,
        "NORMAL", // Options: NORMAL, SYMMETRIC
        "id",    // Table A reference column
        "id",    // Table B reference column
        ).await

    // P.5. WITH CSV FILES (BIG)
    .union_with_csv_file_big("/path/to/set_b/file.csv", 
        DaskJoinerConfig {
            join_type: "LEFT_JOIN".to_string(), // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
            table_a_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
            table_b_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
        }).await
    .intersection_with_csv_file_big("/path/to/set_b/file.csv", 
        DaskIntersectorConfig {
            table_a_ref_column: "id".to_string(), 
            table_b_ref_column: "id".to_string(),
        }).await
    .difference_with_csv_file_big("/path/to/set_b/file.csv",
        DaskDifferentiatorConfig {
            difference_type: "NORMAL".to_string(), // Options: NORMAL, SYMMETRIC
            table_a_ref_column: "id".to_string(), 
            table_b_ref_column: "id".to_string(), 
        }).await

    // P.6. WITH CSV BUILDER (BIG)
    .union_with_csv_builder_big(set_b_csv_builder, 
        DaskJoinerConfig {
            join_type: "LEFT_JOIN".to_string(), // Options: UNION, BAG_UNION, LEFT_JOIN, RIGHT_JOIN, OUTER_FULL_JOIN
            table_a_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
            table_b_ref_column: "id".to_string(), // Leave as empty "" for UNION/ BAG_UNION
        }).await
    .intersection_with_csv_file_big(set_b_csv_builder,
        DaskIntersectorConfig {
            table_a_ref_column: "id".to_string(), 
            table_b_ref_column: "id".to_string(), 
        }).await
    .difference_with_csv_file_big(set_b_csv_builder,
        DaskDifferentiatorConfig {
            difference_type: "NORMAL".to_string(), // Options: NORMAL, SYMMETRIC
            table_a_ref_column: "id".to_string(),
            table_b_ref_column: "id".to_string(),
        }).await

    // Q. Append Analytical Columns
    .append_static_value_column("static_value_across_all_rows", "new_column_name")
    .append_derived_boolean_column(
        "is_qualified_for_discount",
        vec![
            // Same as .where() 
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6")
    .append_inclusive_exclusive_numerical_interval_category_column(
            "column_name",           // Values in this column should be numerically parseable
            "interval_points",       // For instance 0,5,10,15 .... and so on, will create the intervals 00 to 05, 05 to 10, 10 to 15 ... and so on, with the lower limit being inclusive  , and the upper limit being exclusive
            "new_column_name"        // The name of the new column 
        )
    .append_inclusive_exclusive_numerical_interval_category_column(
            "column_name",           // Values in this column should be numerically parseable
            "interval_points",       // For instance 0,5,10,15 .... and so on, will create the intervals 00 to 05, 05 to 10, 10 to 15 ... and so on, with the lower limit being inclusive , and the upper limit being exclusive
            "new_column_name"        // The name of the new column
        )
    .append_derived_category_column(
        "EXPENSE_RANGE",
        vec![
            (
                "< 1000",
                vec![
                    ("Exp1", Exp {
                        column: "Withdrawal Amt.".to_string(),
                        operator: "<".to_string(),
                        compare_with: ExpVal::STR("1000".to_string()),
                        compare_as: "NUMBERS".to_string() // Also: "TEXT", "TIMESTAMPS"
                    }),
                ],
                "Exp1"
            ),
            (
                "1000-5000",
                vec![
                    ("Exp1", Exp {
                        column: "Withdrawal Amt.".to_string(),
                        operator: ">=".to_string(),
                        compare_with: ExpVal::STR("1000".to_string()),
                        compare_as: "NUMBERS".to_string()
                    }),
                    ("Exp2", Exp {
                        column: "Withdrawal Amt.".to_string(),
                        operator: "<".to_string(),
                        compare_with: ExpVal::STR("5000".to_string()),
                        compare_as: "NUMBERS".to_string()
                    }),
                ],
                "Exp1 && Exp2"
            )
        )
    .append_derived_concatenation_column("NewColumnName", vec!["Column1", " ", "Column2", "@"]) // Items in the vector that are not column names will be concatenated as strings
    .append_derived_openai_analysis_columns(
        vec!["column7", "column9"],     // Names of the columns to be analyzed 
        std::collections::HashMap::from([
            ("noun".to_string(), "extract the noun from the sentence".to_string()),
            ("verb".to_string(), "extract the verb from the sentence".to_string()),
        ]),
        "YOUR_OPEN_AI_API_KEY",
        "gpt-3.5-turbo-0125"            // Any OpenAI model with the JSON mode feature
        ).await
    .append_derived_smartcore_linear_regression_column(
        "predictions",                  // name of new column to store predictions
        vec![                           // predictor combinations/ feature sets - length should be 2x the number of predictors/features
            vec!["90", "good"],         // predictor/ feature values can also be text strings. The model uses a Levenshtein distance based approach to tokenize strings.
            vec!["70", "bad"], 
            vec!["60", "great"], 
            vec!["40", "awful"]
        ], 
        vec![72.0, 65.0, 63.0, 56.0],   // labels mapped to the above predictors
        vec![0.0, 100.0],               // normalization range of minimum and maximum prediction value
        vec!["Column1", "Column7"])     // names of columns whose values are to be used to make predictions as the 'test' data set 
    .append_openai_batch_analysis_columns(
        "YOUR_OPEN_AI_API_KEY",
        "output_file_id"
        )
    .append_fuzzai_analysis_columns(
        "Column1", // Name of column to be analyzed
        "sales_analysis", // Identifier for newly created columns
        vec![
            Train {
                input: "I want my money back".to_string(),
                output: "refund".to_string()
            },
            Train {
                input: "I want a refund immediately".to_string(),
                output: "refund".to_string()
            },
        ],
        "WORD_SPLIT:2", // The minimum length of word combinations that training data is to be broken into
        "WORD_LENGTH_SENSITIVITY:0.8", // Multiplies differences in word length between training data input and the value being analyzed by 0.8
        "GET_BEST:2" // Get the top 2 results, max value is 3
        )
    .append_fuzzai_analysis_columns_with_values_where(
        "Column1", // Name of column to be analyzed
        "sales_analysis", // Identifier for newly created column
        vec![
            Train {
                input: "I want my money back".to_string(),
                output: "refund".to_string()
            },
            Train {
                input: "I want a refund immediately".to_string(),
                output: "refund".to_string()
            },
        ],
        "WORD_SPLIT:2", // The minimum length of word combinations that training data is to be broken into
        "WORD_LENGTH_SENSITIVITY:0.8", // Multiplies differences in word length between training data input and the value being analyzed by 0.8
        "GET_BEST:2", // Get the top 2 results, max value is 3
        vec![
            ("Exp1", Exp {
                column: "Deposit Amt.".to_string(),
                operator: ">".to_string(),
                compare_with: ExpVal::STR("500".to_string()),
                compare_as: "NUMBERS".to_string() // Also: "TEXT", "TIMESTAMPS"
            }),
        ],
        "Exp1", // Filters rows where fuzzai analysis would be applied
        )

    // R. Append Analytical Date/Timestamp Columns
    .append_semi_colon_separated_timestamp_count_after_date_column(
        "semi_colon_separated_timestamps_column_name", 
        "date_column_name", 
        "new_column_name"
        )   
    .append_semi_colon_separated_timestamp_count_before_date_column(
        "semi_colon_separated_timestamps_column_name", 
        "date_column_name", 
        "new_column_name"
        )   
    .append_added_days_column_relative_to_adjacent_column(
        "days_column_name",         // Should be float parseable
        "timestamp_column_name",    // Should be timestamp/date parseable
        "new_column_name"
        )
    .append_subtracted_days_column_relative_to_adjacent_column(
        "days_column_name",         // Should be float parseable
        "timestamp_column_name",    // Should be timestamp/date parseable
        "new_column_name"
        )
    .append_added_days_column(
        "date_column_name",             // Should be timestamp/date parseable
        "number_of_days_to_add",        // Should be float parseable
        "new_column_name"
        )
    .append_subtracted_days_column(
        "date_column_name",              // Should be timestamp/date parseable
        "number_of_days_to_subtract",    // Should be float parseable
        "new_column_name"
        )
    .append_day_difference_column(
        "date_column_1_name",
        "date_column_2_name",
        "new_column_name"
        )
    .split_date_as_appended_category_columns("Column10", "%d/%m/%y") // Appends additional columns splitting a date/timestamp into categorization columns by year, month and week


    // S. Plot charts
    .print_dot_chart("Column3", "Column5") // X axis column followed by the Y axis column
    .print_cumulative_dot_chart("Column3", "Column5") // X axis column followed by the Y axis column
    .print_smooth_line_chart("Column3", "Column5") // X axis column followed by the Y axis column
    .print_cumulative_smooth_line_chart("Column3", "Column5") // X axis column followed by the Y axis column

    // T. Save
    .save_as("/path/to/your/file2.csv")

    // U. Die
    .die() // Gracefully terminates execution of a CsvBuilder chain

#### Extract Data

These methods return specific data, instead of a mutable CsvBuilder object, and hence, can not be subsequently chained.

    let builder = CsvBuilder::from_csv("/path/to/your/file1.csv");

    builder
    .get_unique("column_name"); // Returns a Vec<String>
    .get("column_name"); // Returns cell content as a String, if the csv has been filtered to single row. See the chainable ".set()" method above for set a value in such a circumstance
    .get_freq(vec!["Column1", Column2]) // Returns a HashMap where keys are column names and values are vectors of sorted (value, frequency) pairs.
    .get_freq_mapped(vec![
            ("Column1", vec![
                ("Delhi", vec!["New Delhi", "Delhi"]),
                ("UP", vec!["Ghaziabad", "Noida"])
            ]),
            ("Column2", vec![("NO_GROUPINGS", vec![])])
        ])
    .has_data() // Returns `true` if either headers or data rows are present, `false` otherwise.
    .has_headers() // Returns `true` if headers are present, `false` otherwise.
    .get_headers().unwrap() // Returns an Option<&[String]> containing a reference to the headers if present, `None` otherwise.
    .get_data().unwrap() // Returns an Option<&Vec<Vec<String>>> containing a reference to the data contained in the builder.

    .get_numeric_min("Column1").unwrap() // Returns a String value of the minimum numeric value - assuming all values of the column can be consistently parsed as such
    .get_numeric_max("Column1").unwrap() // Returns a String value of the maximum numeric value - assuming all values of the column can be consistently parsed as such
    .get_datetime_min("Column1").unwrap() // Returns a String value of the minimum numeric value - assuming all values of the column can be consistently parsed as such
    .get_datetime_max("Column1").unwrap() // Returns a String value of the maximum numeric value - assuming all values of the column can be consistently parsed as such
    .get_range("Column1").unwrap() // Returns an `Option<f64>` the range (difference between the maximum and minimum) in a numerically parseable column. 
    .get_sum("Column1").unwrap() // Returns an `Option<f64>` the sum of all values in a numerically parseable column.
    .get_mean("Column1").unwrap() // Returns an `Option<f64>` - the mean of all values in a numerically parseable column.
    .get_median("Column1").unwrap() // Returns an `Option<f64>` - the median of all values in a numerically parseable column.
    .get_mode("Column1").unwrap() // Returns an `Option<f64>` - the mode of all values in a numerically parseable column.
    .get_variance("Column1").unwrap() // Returns an `Option<f64>` - the variance of all values in a numerically parseable column.
    .get_standard_deviation("Column1").unwrap() // Returns an `Option<f64>` - the standard deviation of all values in a numerically parseable column.
    .get_sum_of_squared_deviations("Column1").unwrap() // Returns an `Option<f64>` - the getsum of squared deviations of all values in a numerically parseable column.
    .get_get_non_numeric_values("Column1").unwrap() // Returns an `Option<Vec<String>>` - the non numeric values in a column. 

    // Send data to OpenAI for batch analysis, returning a batch_id as `Result<String, Box<dyn std::error::Error>>`
    .send_columns_for_openai_batch_analysis(
        vec!["column7", "column9"],     // Names of the columns to be analyzed
        std::collections::HashMap::from([
            ("noun".to_string(), "extract the noun from the sentence".to_string()),
            ("verb".to_string(), "extract the verb from the sentence".to_string()),
        ]),
        "YOUR_OPEN_AI_API_KEY",
        "gpt-3.5-turbo-0125"            // Any OpenAI model with the JSON mode feature
        "night_job"                     // Name of the batch

    )
    .get_all_csv_files("path/to/your/directory") // Returns a `Result<CsvBuilder, Box<dyn Error>>` of all CSV files in the directory specifying their file name, last modified time, and file size in mb

#### CsvBuilder-XGBoost Operations

    // A. Creating a Model
    use rgwml::csv_utils::CsvBuilder;
    use rgwml::xgb_utils::XgbConfig;

    let mut builder = CsvBuilder::from_csv("/path/to/your/training_data.csv");

    let (builder, report) =  builder.create_xgb_model(
        "ticket_count, tickets_after_last_payment",     // Param column names
        "churn_day",                                    // Target column name
        "PREDICTION",                                   // Prediction column name
        "/home/rgw/Desktop/csv_db/xgb_models",          // Dir to save model
        "churn_v8",                                     // Model name without extension
        XgbConfig {
            objective: "reg:squarederror".to_string(), // Leave as empty string for binary classification
            xgb_max_depth: "".to_string(),
            xgb_learning_rate: "".to_string(),
            xgb_n_estimators: "".to_string(),
            xgb_gamma: "".to_string(),
            xgb_min_child_weight: "".to_string(),
            xgb_subsample: "".to_string(),
            xgb_colsample_bytree: "".to_string(),
            xgb_reg_lambda: "".to_string(),
            xgb_reg_alpha: "".to_string(),
            xgb_scale_pos_weight: "".to_string(),
            xgb_max_delta_step: "".to_string(),
            xgb_booster: "".to_string(),
            xgb_tree_method: "".to_string(),
            xgb_grow_policy: "".to_string(),
            xgb_eval_metric: "".to_string(),
            xgb_early_stopping_rounds: "".to_string(),
            xgb_device: "".to_string(),
            xgb_cv: "".to_string(),
            xgb_interaction_constraints: "".to_string(),
            hyperparameter_optimization_attempts: "".to_string(),
            hyperparameter_optimization_result_display_limit: "".to_string(),
            dask_workers: "".to_string(),
            dask_threads_per_worker: "".to_string(),
        },
    )
    .await;

    builder
        .order_columns(vec!["...", "churn_day", "PREDICTION"])
        .print_table();
    dbg!(report);

    // B. Invoking a Model
    use rgwml::csv_utils::CsvBuilder;
    use rgwml::xgb_utils::XgbConfig;

    let mut builder = CsvBuilder::from_csv("/home/rgw/Desktop/csv_db/churn_predictions_data.csv");

    builder.append_xgb_model_predictions_column(
        "ticket_count, tickets_after_last_payment",             // Param column names
        "PREDICTION",                                           // Prediction column name
        "/path/to/your/model/churn_v8.json"     // Model absolute path
    ).await;

    let _ = builder
        .order_columns(vec!["...", "ticket_count", "tickets_after_last_payment", "PREDICTION"])
        .print_table()
        .save_as("/path/to/your/predictions/churn_v8_predictions_current_portfolio.csv");

#### CsvBuilder-Clustering (scikit-learn) Operations

    // A. Creating a Model
    use rgwml::csv_utils::CsvBuilder;
    use rgwml::clustering_utils::ClusteringConfig;
    use tokio::runtime::Runtime;
    use std::path::PathBuf;
    use std::env::current_dir;
    
    let headers = vec![
        "customer_id".to_string(),
        "age".to_string(),
        "annual_income".to_string(),
        "spending_score".to_string(),
    ];
    
    let data = vec![
        vec!["1".to_string(), "19".to_string(), "15".to_string(), "39".to_string()],
        vec!["2".to_string(), "21".to_string(), "15".to_string(), "81".to_string()],
        vec!["3".to_string(), "20".to_string(), "16".to_string(), "6".to_string()],
        vec!["4".to_string(), "23".to_string(), "16".to_string(), "77".to_string()],
        vec!["5".to_string(), "31".to_string(), "17".to_string(), "40".to_string()],
        vec!["6".to_string(), "22".to_string(), "17".to_string(), "76".to_string()],
        vec!["7".to_string(), "35".to_string(), "18".to_string(), "6".to_string()],
        vec!["8".to_string(), "23".to_string(), "18".to_string(), "94".to_string()],
        vec!["9".to_string(), "64".to_string(), "19".to_string(), "3".to_string()],
        vec!["10".to_string(), "30".to_string(), "19".to_string(), "72".to_string()],
    ];
    
    let mut builder = CsvBuilder::from_raw_data(headers, data);
    let rt = Runtime::new().unwrap();
    rt.block_on(async {
        let param_column_names = "age, annual_income, spending_score";
        let cluster_column_name = "CLUSTERING";
        let clustering_config = ClusteringConfig {
            operation: "KMEANS".to_string(),        // Options: KMEANS, DBSCAN, AGGLOMERATIVE, MEAN_SHIFT, GMM, SPECTRAL, BIRCH
            optimal_n_cluster_finding_method: "ELBOW".to_string(),  // FIXED:{n}, ELBOW, SILHOUETTE; Not relevant for MEAN_SHIFT and DBSCAN
            dbscan_eps: "".to_string(),             // Only relevant for DBSCAN
            dbscan_min_samples: "".to_string(),     // Only relevant for DBSCAN
        };
        builder.append_clustering_column(param_column_names, cluster_column_name, clustering_config).await;
    });

### CsvConverter

    use serde_json::json;
    use tokio;
    use rgwml::csv_utils::CsvConverter;
    use rgwml::api_utils::ApiCallBuilder;

    // Function to fetch sales data from an API
    async fn fetch_sales_data_from_api() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/sales"; // API URL to fetch sales data

        // Payload for the API call
        let payload = json!({
            "date": "2023-12-21"
        });

        // Performing the API call
        let response = ApiCallBuilder::call(method, url, None, Some(payload))
            .execute()
            .await?;

        Ok(response)
    }

    // Main function with tokio's async runtime
    #[tokio::main]
    async fn main() {
        // Fetch sales data and handle potential errors inline
        let sales_data_response = fetch_sales_data_from_api().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch sales data: {}", e);
            std::process::exit(1); // Exit the program in case of an error
        });

        // Convert the fetched JSON data to CSV
        CsvConverter::from_json(&sales_data_response, "path/to/your/file.csv")
            .expect("Failed to convert JSON to CSV"); // Handle errors in CSV conversion
    }

### Caching a CsvBuilder with the `was_last_modified_within` method

#### Example 1: Usage with an API Call

    use rgwml::api_utils::ApiCallBuilder;
    use rgwml::csv_utils::CsvBuilder;
    use serde_json::json;
    use tokio;

    async fn generate_daily_sales_report() -> Result<(), Box<dyn std::error::Error>> {
        async fn fetch_sales_data_from_api() -> Result<String, Box<dyn std::error::Error>> {
            let method = "POST";
            let url = "http://example.com/api/sales"; // API URL to fetch sales data

            let payload = json!({
                "date": "2023-12-21"
            });

            let response = ApiCallBuilder::call(method, url, None, Some(payload))
                .execute()
                .await?;

            Ok(response)
        }

        let sales_data_response = fetch_sales_data_from_api().await?;

        // Convert the JSON response to CSV format using CsvBuilder
        let mut csv_builder = CsvBuilder::new();
        csv_builder.set_header(vec!["column1", "column2", "column3"]); // Set your headers appropriately
        // Add your rows based on the API response
        // csv_builder.add_row(vec!["value1", "value2", "value3"]);

        csv_builder.save_as("/path/to/daily/sales/report/cache.csv");

        Ok(())
    }

    #[tokio::main]
    async fn main() {
        let cache_path = "/path/to/daily_sales_report.csv";
        let cache_duration_minutes = 1440; // Cache duration set to 1 day

        if !CsvBuilder::was_last_modified_within(cache_path, &cache_duration_minutes.to_string()) {
            if let Err(e) = generate_daily_sales_report().await {
                eprintln!("Failed to generate sales report: {}", e);
            }
        }

        println!("Sales report is ready.");
    }

#### Example 2: Usage with a CsvBuilder retrieved from an external database

    use rgwml::csv_utils::CsvBuilder;
    use tokio;

    async fn generate_builder(cache_path: &str) -> Result<(), Box<dyn std::error::Error>> {
        let query = r#"
        SELECT * FROM your_table
        "#;

        let mut builder = CsvBuilder::from_mysql_query(
            "username",
            "password",
            "host",
            "database",
            &query,
        )
        .await
        .expect("Failed to create CsvBuilder from query");

        builder.save_as(cache_path);

        Ok(())
    }

    #[tokio::main]
    async fn main() {
        let cache_path = "/path/to/cache/your/file.csv";
        let cache_duration_minutes = 1440; // Cache duration set to 1 day

        if !CsvBuilder::was_last_modified_within(cache_path, &cache_duration_minutes.to_string()) {
            if let Err(e) = generate_builder(cache_path).await {
                eprintln!("Failed to generate data: {}", e);
            }
        }

        let mut builder = CsvBuilder::from_csv(cache_path);
        builder.print_table();
    }

4. `db_utils`
-----------

### Easily query a MSSQL, MYSQL, Clickhouse server, or Google Big Query to extract data

    use rgwml::db_utils::DbConnect;

    #[tokio::main]
    async fn main() {
        let result_1 = DbConnect::execute_mssql_query( // use `execute_mysql_query` for MYSQL
            "username", 
            "password", 
            "server/host", 
            "database", 
            "SELECT * FROM your_table").await?;

        let headers_1 = result_1.0;
        let row_data_1 = result_1.1;

        let result_2 = DbConnect::execute_clickhouse_query( 
            "username",
            "password",
            "server/host",
            "SELECT * FROM your_table").await?;

        let headers_2 = result_2.0;
        let row_data_2 = result_2.1;

        let result_3 = DbConnect::execute_google_big_query_query(
            "your/json/credentials/path",
            "SELECT * FROM your_table").await?;

        let headers_3 = result_2.0;
        let row_data_3 = result_2.1;

    }

### Easily query a MYSQL server to write data

Easily query a MSSQL or MYSQL server to extract data

    use rgwml::db_utils::DbConnect;

    #[tokio::main]
    async fn main() {
        let result = DbConnect::execute_mysql_write(
            "username", 
            "password", 
            "server/host", 
            "database", 
            ""INSERT INTO your_table (column1, column2) VALUES ('value1', 'value2')").await?;
    }

### Print information on a MYSQL/ MSSQL Server

    use rgwml::db_utils::DbConnect;

    // Print MSSQL Server Information
    DbConnect::print_mssql_databases("username", "password", "server", "default_database");
    DbConnect::print_mssql_schemas("username", "password", "server", "in_focus_database");
    DbConnect::print_mssql_tables("username", "password", "server", "in_focus_database", "schema");
    DbConnect::print_mssql_table_description("username", "password", "server", "in_focus_database", "table_name");
    DbConnect::print_mssql_architecture("username", "password", "server", "default_database");

    // Print MySQL Server Information
    DbConnect::print_mysql_databases("username", "password", "server", "default_database");
    DbConnect::print_mysql_tables("username", "password", "server", "in_focus_database");
    DbConnect::print_mysql_table_description("username", "password", "server", "in_focus_database", "table_name");
    DbConnect::print_mysql_architecture("username", "password", "server", "default_database");

    // Print Clickhouse Server Information
    DbConnect::print_clickhouse_databases("username", "password", "server");
    DbConnect::print_clickhouse_tables("username", "password", "server", "in_focus_database");
    DbConnect::print_clickhouse_table_description("username", "password", "server", "in_focus_database", "table_name");
    DbConnect::print_clickhouse_architecture("username", "password", "server");

    // Print BigQuery Server Information
    DbConnect::print_google_big_query_datasets("path/to/your/json/credentials", "your_project_id");
    DbConnect::print_google_big_query_tables("path/to/your/json/credentials", "your_project_id", "dataset_name");
    DbConnect::print_google_big_query_table_description("path/to/your/json/credentials", "your_project_id", "dataset_name", "table_name");
    DbConnect::print_google_big_query_architecture("path/to/your/json/credentials", "your_project_id"); // Note: Your json credentials must have READ METADATA access for this to work

5. `dc_utils`
-------------

Get dataset/ sheet name information from Data Container storage types.

### 5.1. Extract data from H5 Files

    use rgwml::csv_utils::CsvBuilder;
    use rgwml::dc_utils::{DcConnectConfig, DataContainer};
    use tokio::runtime::Runtime;
    use std::path::PathBuf;
    
    let rt = Runtime::new().unwrap();
    rt.block_on(async {
    
        let dc_connect_config = DcConnectConfig {
            path: "path/to/your/h5/file".to_string(),
            dc_type: "H5".to_string(),
            h5_dataset_identifier: "random_data".to_string(), // Name of the data set
            h5_identifier_type: "DATASET_NAME".to_string(),   // If the h5_dataset_identifier is the dataset index, set this to DATASET_ID
        };
    
        let result = DataContainer::get_dc_data(dc_connect_config).await;
    });

### 5.2. Get Sheet Names in XLS Files

    use rgwml::dc_utils::DataContainer;
    use std::env;
    use std::path::PathBuf;
    
    let test_file_path_str = "path/to/your/file";
    let sheet_names = DataContainer::get_xls_sheet_names(test_file_path_str);
    let names = sheet_names.unwrap();

### 5.3. Get Sheet Names in XLSX Files

    use rgwml::dc_utils::DataContainer;
    use std::env;
    use std::path::PathBuf;
    
    let test_file_path_str = "path/to/your/file";
    let sheet_names = DataContainer::get_xlsx_sheet_names(test_file_path_str);
    let names = sheet_names.unwrap();

### 5.4. Get Data Set names in H5 Files

    use rgwml::dc_utils::DataContainer;
    use std::env;
    use std::path::PathBuf;
    
    let test_file_path_str = "path/to/your/file";
    let sheet_names = DataContainer::get_h5_dataset_names(test_file_path_str);
    let names = sheet_names.unwrap();

6. `xgb_utils`
--------------

A python-dependant toolkit for interacting with the XGBoost API, that helps you create XGBoost models, extract details of XGBoost models, and invoke XGBoost models for predictions.

### 6.1. Create Xgb Models

    use rgwml::csv_utils::CsvBuilder;
    use rgwml::xgb_utils::{XgbConfig, XgbConnect};
    use tokio::runtime::Runtime;
    use std::path::PathBuf;
    
    let current_dir = std::env::current_dir().unwrap();
    let rt = Runtime::new().unwrap();
    
    rt.block_on(async {
    
        // Append the file name to the directory path
        let csv_path = current_dir.join("test_file_samples/xgb_test_files/xgb_regression_training_sample.csv");
        
        // Convert the path to a string
        let csv_path_str = csv_path.to_str().unwrap();
        // Append the relative path to the current directory
        let model_dir = current_dir.join("test_file_samples/xgb_test_files/xgb_test_models");
        
        // Convert the path to a string
        let model_dir_str = model_dir.to_str().unwrap();
        let param_column_names = "no_of_tickets, last_60_days_tickets";
        let target_column_name = "churn_day";
        let prediction_column_name = "churn_day_PREDICTIONS";
        let model_name_str = "test_reg_model";
        
        let xgb_config = XgbConfig {
            objective: "reg:squarederror".to_string(),
            max_depth: "6".to_string(),
            learning_rate: "0.05".to_string(),
            n_estimators: "200".to_string(),
            gamma: "0.2".to_string(),
            min_child_weight: "5".to_string(),
            subsample: "0.8".to_string(),
            colsample_bytree: "0.8".to_string(),
            reg_lambda: "2.0".to_string(),
            reg_alpha: "0.5".to_string(),
            scale_pos_weight: "".to_string(),
            max_delta_step: "".to_string(),
            booster: "".to_string(),
            tree_method: "".to_string(),
            grow_policy: "".to_string(),
            eval_metric: "".to_string(),
            early_stopping_rounds: "".to_string(),
            device: "".to_string(),
            cv: "".to_string(),
            interaction_constraints: "".to_string(),
        };

        let result = XgbConnect::train(csv_path_str, param_column_names, target_column_name, prediction_column_name, model_dir_str, model_name_str, xgb_config).await;

    });
    
### 6.2. Extract Details from Xgb Models

    use rgwml::csv_utils::CsvBuilder;
    use rgwml::xgb_utils::{XgbConfig, XgbConnect};
    use std::path::PathBuf;
    
    // Get the current working directory
    let current_dir = std::env::current_dir().unwrap();
    
    // Append the relative path to the current directory
    let model_dir = current_dir.join("test_file_samples/xgb_test_files/xgb_test_models");
    
    // Convert the path to a string
    let models_path = model_dir.to_str().unwrap();

    let mut csv_builder = XgbConnect::get_all_xgb_models(models_path).expect("Failed to load XGB models");

### 6.3. Invoke XgbModels

    use rgwml::csv_utils::CsvBuilder;
    use rgwml::xgb_utils::{XgbConfig, XgbConnect};
    use tokio::runtime::Runtime;
    use std::path::PathBuf;
    
    // Get the current working directory
    let current_dir = std::env::current_dir().unwrap();
    
    // Append the relative path to the current directory
    let model_dir = current_dir.join("test_file_samples/xgb_test_files/xgb_test_models");

    // Append the file name to the directory path
    let model_path = model_dir.join("test_reg_model.json");
    
    // Convert the path to a string
    let model_path_str = model_path.to_str().unwrap();
    
    let rt = Runtime::new().unwrap();
    rt.block_on(async {
        let headers = vec!["category".to_string(), "name".to_string(), "age".to_string(), "date".to_string(), "flag".to_string()];
        let data = vec![
            vec!["1".to_string(), "Alice".to_string(), "30".to_string(), "2023-01-01 12:00:00".to_string(), "1".to_string()],
            vec!["2".to_string(), "Bob".to_string(), "22".to_string(), "2022-12-31 11:59:59".to_string(), "0".to_string()],
            vec!["1".to_string(), "Charlie".to_string(), "25".to_string(), "2023-01-02 13:00:00".to_string(), "1".to_string()],
            vec!["1".to_string(), "Charlie".to_string(), "28".to_string(), "2023-01-01 11:00:00".to_string(), "0".to_string()]
        ];
    
        let mut builder = CsvBuilder::from_raw_data(headers, data);

        // Append the relative path to the current directory
        let csv_path = current_dir.join("test_file_samples/xgb_test_files/xgb_regression_training_sample.csv");
        let csv_path_str = csv_path.to_str().unwrap();
        let param_column_names = "no_of_tickets,last_60_days_tickets";
        let model_path_str = "/home/rgw/Desktop/csv_db/xgb_models/test_reg_model.json";
        let prediction_column_name = "churn_day_PREDICTION";
    
        let result = XgbConnect::predict(csv_path_str, param_column_names, prediction_column_name, model_path_str).await;
    });

7. `clustering_utils`
---------------------

A python-dependant toolkit for interacting with the scikit-learn API, that helps you append a clustering column to a CSV file based on classic clustering alogrithms such as `KMEANS, DBSCAN, AGGLOMERATIVE, MEAN_SHIFT, GMM, SPECTRAL, BIRCH`. The API is flexible enough to streamline situations where the ideal number of n clusterns can be algorithmically determined by `ELBOW and SILHOUETTE` techniques.

    use rgwml::csv_utils::CsvBuilder;
    use rgwml::clustering_utils::{ClusteringConfig, ClusteringConnect};
    use tokio::runtime::Runtime;
    use std::path::PathBuf;
    
    
    let rt = Runtime::new().unwrap();
    rt.block_on(async {
    
        let csv_path_str = "path/to/your/csv/file";
        let param_column_names = "age,annual_income,spending_score";
        let cluster_column_name = "CLUSTERS";
    
        let clustering_config = ClusteringConfig {
            operation: "KMEANS".to_string(),        // 'KMEANS', 'DBSCAN', 'AGGLOMERATIVE', 'MEAN_SHIFT', 'GMM', 'SPECTRAL', 'BIRCH'
            optimal_n_cluster_finding_method: "ELBOW".to_string(),  //  Options: FIXED:{n}, ELBOW, SILHOUETTE; Not relevant for DBSCAN and MEAN_SHIFT
            dbscan_eps: "".to_string(),             // Only relevant for DBSCAN
            dbscan_min_samples: "".to_string()      // Only relevant for DBSCAN
        };
    
        let result = ClusteringConnect::cluster(csv_path_str, param_column_names, cluster_column_name, clustering_config).await;
        dbg!(&result);
    });

8. `ai_utils`
-----------

This library provides simple AI utilities for neural association analysis, as well as connecting with the OpenAI JSON mode and BATCH processing API. 

### 8.1. Rust Native AI Functionalities

It focuses on using simple Levenshtein/ Fuzzy matching for processing and analyzing data within neural networks, with an emphasis on understanding AI decision-making processes and text analysis, optimized for a parallel computing environment.

    use rgwml::ai_utils::{fuzzai, SplitUpto, ShowComplications, WordLengthSensitivity};
    use std::error::Error;

    #[tokio::main]
    async fn main() {
        // Call the fuzzai function with CSV file path
        let fuzzai_result = fuzzai(
            "path/to/your/model/training/csv/file.csv",
            "model_training_input_column_name",
            "model_training_output_column_name",
            "your text to be analyzed against the training data model",
            "your task description: clustering customer complaints",
            SplitUpto::WordSetLength(2), // Set the minimum word length of combination value to split the training input data during the analysis
            ShowComplications::False, // Set to True to see inner workings of the model
            WordLengthSensitivity::Coefficient(0.2), // Set to Coefficient::None to disregard differences in the word length of the training input and the text being analyzed; Increase the coefficient to give higher weightage to matches with similar word length
        ).await.expect("Analysis should succeed");

        dbg!(fuzzai_result);
    }

### 8.2. OpenAI API Functionalities

#### 8.2.1. OpenAI Synchronus JSON mode

    use rgwml::ai_utils::{get_openai_analysis_json};
    use std::collections::HashMap;

    let customer_feedback = "Your servcies are great!";
    let mut analysis_query = HashMap::new();
    analysis_query.insert("was_positive".to_string(), "Return true if the sentiment is positive, else return False".to_string());

    let analysis = get_openai_analysis_json(
        customer_feedback,
        analysis_query,
        "your/OpenAI/API/key"
        "gpt-3.5-turbo" // Or any model supporting JSON Mode
    );

    dbg!(analysis); 

#### 8.2.2. OpenAI Asynchronus BATCH mode

    use rgwml::ai_utils::{upload_file_to_openai, create_openai_batch, fetch_and_print_openai_batches, cancel_openai_batch};
    use rgwml::csv_utils::CsvBuilder;
    use std::collections::HashMap;


    let headers = vec!["customer_feedback".to_string(), "resolution_time".to_string()];
    let data = vec![
        vec!["Your services are great!".to_string(), "5".to_string()],
        vec!["Not satisfied with the resolution.".to_string(), "15".to_string()],
    ];

    let mut csv_builder = CsvBuilder::from_raw_data(headers, data);

    let columns_to_analyze = vec!["customer_feedback", "resolution_time"];
    let mut analysis_query = HashMap::new();
    analysis_query.insert("was_positive".to_string(), "Return true if the sentiment is positive, else return False".to_string());
    let api_key = "your_openai_api_key";
    let model = "gpt-3.5-turbo";
    let batch_description = "Positive Sentiment Analysis";

    // Send OpenAI a batch task
    let batch_id = csv_builder.send_data_for_openai_batch_analysis(
        columns_to_analyze,
        analysis_query,
        &api_key,
        model,
        batch_description
    ).await?;

    dbg!(&batch_id);

    // To fetch and print details of all your batch tasks
    let _ = fetch_and_print_openai_batches(api_key).await?;

    // To cancel the batch task
    let _ = cancel_openai_batch(api_key, batch_id).await?;

    // To retreive an OpenAI batch analysiss as a named temp file `Result<NamedTempFile, Box<dyn Error>>`
    let _ = retrieve_openai_batch(api_key, file_id)

9. `public_url_utils`
---------------------

Provides simple utilities to retreive data from popular publicly available interfaces such as a publicly viewable Google Sheet.

    use rgwml::csv_utils::CsvBuilder;
    use rgwml::public_url_utils::{PublicUrlConnectConfig, PublicUrlConnect};
    use tokio::runtime::Runtime;
    use std::path::PathBuf;
    
    let rt = Runtime::new().unwrap();
    rt.block_on(async {
    
        let public_url_connect_config = PublicUrlConnectConfig {
        url: "https://docs.google.com/spreadsheets/d/1U9ozNFwV__c15z4Mp_EWorGwOv6mZPaQ9dmYtjmCPow/edit#gid=272498272".to_string(),
        url_type: "GOOGLE_SHEETS".to_string(),
        };
        
        let result = PublicUrlConnect::get_google_sheets_data(public_url_connect_config).await;

    });

10. `api_utils`
------------

Examples across common API call patterns

    use serde_json::json;
    use rgwml::api_utils::ApiCallBuilder;
    use std::collections::HashMap;

    #[tokio::main]
    async fn main() {
        // Fetch and cache post request without headers, with retry mechanism
        let response = fetch_and_cache_post_request().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch data: {}", e);
            std::process::exit(1);
        });
        println!("Response: {:?}", response);

        // Fetch and cache post request with headers, with retry mechanism
        let response_with_headers = fetch_and_cache_post_request_with_headers().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch data with headers: {}", e);
            std::process::exit(1);
        });
        println!("Response with headers: {:?}", response_with_headers);

        // Fetch and cache post request with form URL encoded content type, with retry mechanism
        let response_form_urlencoded = fetch_and_cache_post_request_form_urlencoded().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch form URL encoded data: {}", e);
            std::process::exit(1);
        });
        println!("Form URL encoded response: {:?}", response_form_urlencoded);
    }

    // Example 1: Without Headers, includes retry mechanism
    async fn fetch_and_cache_post_request() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/submit";
        let payload = json!({
            "field1": "Hello",
            "field2": 123
        });

        let response = ApiCallBuilder::call(method, url, None, Some(payload))
            .maintain_cache(30, "/path/to/post_cache.json") // Uses cache for 30 minutes
            .retries(3, 5) // Retry up to 3 times with a 5-second timeout between retries
            .execute()
            .await?;

        Ok(response)
    }

    // Example 2: With Headers, includes retry mechanism
    async fn fetch_and_cache_post_request_with_headers() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/submit";
        let headers = json!({
            "Content-Type": "application/json",
            "Authorization": "Bearer your_token_here"
        });
        let payload = json!({
            "field1": "Hello",
            "field2": 123
        });

        let response = ApiCallBuilder::call(method, url, Some(headers), Some(payload))
            .maintain_cache(30, "/path/to/post_with_headers_cache.json") // Uses cache for 30 minutes
            .retries(3, 5) // Retry up to 3 times with a 5-second timeout between retries
            .execute()
            .await?;

        Ok(response)
    }

    // Example 3: With application/x-www-form-urlencoded Content-Type, includes retry mechanism
    async fn fetch_and_cache_post_request_form_urlencoded() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/submit";
        let headers = json!({
            "Content-Type": "application/x-www-form-urlencoded"
        });
        let payload = HashMap::from([
            ("field1", "value1"),
            ("field2", "value2"),
        ]);

        let response = ApiCallBuilder::call(method, url, Some(headers), Some(payload))
            .maintain_cache(30, "/path/to/post_form_urlencoded_cache.json") // Uses cache for 30 minutes
            .retries(3, 5) // Retry up to 3 times with a 5-second timeout between retries
            .execute()
            .await?;

        Ok(response)
    }