rgwml 1.1.63

A crate for reducing cognitive overload while using rust for ml, ai, and data science operations
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# RGWML (an AI, Data Science & Machine Learning Library designed to minimize developer cognitive load)

***Author: Ryan Gerard Wilson (https://ryangerardwilson.com)***

This library simplifies Data Science, Machine Learning, and Artifical Intelligence operations. It's designed to leverage the best features of RUST, in a manner that is graceful, elegant, and ticklishly fun to build upon.

1. Overview
-----------

## `db_utils`

- **Purpose**: Query various SQL databases with simple elegant syntax.
- **Features**: This module supports the following database connections:
  - MSSQL
  - MYSQL

## `csv_utils`

- **Purpose**: A Comprehensive Toolkit for CSV File Management, in AI/ML pipelines.
- **Features**: Offers a powerful suite of tools designed for efficient and flexible handling of CSV files. Key components include:
  - **CsvBuilder**: A versatile builder for creating and manipulating CSV files, facilitating:
    - **Easy Initialization**: Start with a new CSV or load from an existing file.
    - **Custom Headers and Rows**: Set custom headers and add rows effortlessly.
    - **Advanced Data Manipulation**: Rename, drop, and reorder columns, sort data, and apply complex filters like fuzzy matching and timestamp comparisons.
    - **Chainable Methods**: Combine multiple operations in a fluent and readable manner.
    - **Data Analysis Aids**: Count rows, print specific rows, ranges, or unique values for quick analysis.
    - **Flexible Saving Options**: Save your modified CSV to a desired path.
  - **CsvResultCacher**: Cache results of CSV operations, enhancing performance for repetitive tasks.
  - **CsvConverter**: Seamlessly convert various data formats like JSON into CSV, expanding the utility of your data.

## `ai_utils`

- **Purpose**: Leverage Rust's concurrency for AI/Graph Theory-based analysis.
- **Features**: 
  - Conduct complex data analyses and process neural networks in parallel.
  - Utilize Rust's performance and safety features.
  - Works directly with CSV files, with an elegant syntax, for model training.

## `api_utils`

- **Purpose**: Gracefully make and cache API calls.
- **Features**: 
  - **ApiCallBuilder**: Make and cache API calls effortlessly, and manage cached data for efficient API usage.

## `loop_utils`

- **Purpose**: Simplify asynchronous operations in loops.
- **Features**: 
  - **FutureLoop**: Handle multiple tasks simultaneously when working with lists or collections, while working with a fluent interface.

2. `db_utils`
-----------

Easily query a MSSQL or MYSQL server

    use rgwml::db_utils::DbConnect;

    #[tokio::main]
    async fn main() {
        let result = DbConnect::execute_mssql_query( // use `execute_mysql_query` for MYSQL
            "username", 
            "password", 
            "server/host", 
            "database", 
            "SELECT * FROM your_table").await?;

        let headers = result.0;
        let row_data = result.1;
    }

3. `csv_utils`
------------

The `csv_utils` module encompasses a set of utilities designed to simplify various tasks associated with CSV files. These utilities include the `CsvBuilder` for creating and managing CSV files, the `CsvConverter` for transforming JSON data into CSV format, and the `CsvResultCacher` for efficient data caching and retrieval. Each utility is tailored to enhance productivity and ease in handling CSV data in different scenarios.

- CsvBuilder: Offers a fluent interface for creating, analyzing, and saving CSV files. It simplifies interactions with CSV data, whether starting from scratch, modifying existing files, etc.

- CsvConverter: Provides a method for converting JSON data into CSV format. This utility is particularly useful for processing and saving JSON API responses as CSV files, offering a straightforward approach to data conversion. The `CsvConverter` simplifies the process of converting JSON data into a CSV format. This is particularly useful for scenarios where data is received in JSON format from an API and needs to be transformed into a more accessible and readable CSV file. To use `CsvConverter`, simply call the `from_json` method with the JSON data and the desired output file path as arguments.

- CsvResultCacher: Uses a data generator function to create or fetch data, saves it to a specified path, and keeps it for a set duration. This helps avoid unnecessary data regeneration. Imagine you have a CSV file that logs daily temperatures. You don't want to generate this file every time you access it, especially if the data doesn't change much during the day.

### CsvConverter

    use serde_json::json;
    use tokio;
    use rgwml::csv_utils::CsvConverter;
    use rgwml::api_utils::ApiCallBuilder;

    // Function to fetch sales data from an API
    async fn fetch_sales_data_from_api() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/sales"; // API URL to fetch sales data

        // Payload for the API call
        let payload = json!({
            "date": "2023-12-21"
        });

        // Performing the API call
        let response = ApiCallBuilder::call(method, url, None, Some(payload))
            .execute()
            .await?;

        Ok(response)
    }

    // Main function with tokio's async runtime
    #[tokio::main]
    async fn main() {
        // Fetch sales data and handle potential errors inline
        let sales_data_response = fetch_sales_data_from_api().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch sales data: {}", e);
            std::process::exit(1); // Exit the program in case of an error
        });

        // Convert the fetched JSON data to CSV
        CsvConverter::from_json(&sales_data_response, "path/to/your/file.csv")
            .expect("Failed to convert JSON to CSV"); // Handle errors in CSV conversion
    }

### CsvBuilder

#### Instantiation

Example 1: Creating a new object

    use rgwml::csv_utils::CsvBuilder;

    let builder = CsvBuilder::new()
        .set_header(&["Column1", "Column2", "Column3"])
        .add_rows(&[&["Row1-1", "Row1-2", "Row1-3"], &["Row2-1", "Row2-2", "Row2-3"]])
        .save_as("/path/to/your/file.csv");

Example 2: Load from an existing file

    use rgwml::csv_utils::CsvBuilder;

    let builder = CsvBuilder::from_csv("/path/to/existing/file.csv");

Example 3: Load from an xls file

    use rgwml::csv_utils::CsvBuilder;
        
    let builder = CsvBuilder::from_xls("/path/to/existing/file.xls", 1); // Loads from the first sheet of the .xls file

Example 4: Load from raw data

    use rgwml::csv_utils::CsvBuilder;

    let headers = vec!["Header1".to_string(), "Header2".to_string(), "Header3".to_string()];
    let data = vec![
        vec!["Row1-1".to_string(), "Row1-2".to_string(), "Row1-3".to_string()],
        vec!["Row2-1".to_string(), "Row2-2".to_string(), "Row2-3".to_string()],
    ];

    let builder = CsvBuilder::from_raw_data(headers, data);

Example 5: Load from an MSSQL Server query

    use rgwml::csv_utils::CsvBuilder;

    CsvBuilder::from_mssql_query(
        "username", 
        "password", 
        "server", 
        "database", 
        "SELECT * from your_table").await;

####  Manipulating a CsvBuilder Object for Analysis or Saving

    use rgwml::csv_utils::{Exp, ExpVal, CsvBuilder, CsvConverter, CsvResultCacher};

    let _ = CsvBuilder::from_csv("/path/to/your/file.csv")
        .rename_columns(vec![("OLD_COLUMN", "NEW_COLUMN")])
        .drop_columns(vec!["UNUSED_COLUMN"])
        .cascade_sort(vec![("COLUMN", "ASC")])
        .where_(
            vec![
                ("Exp1", Exp {
                    column: "customer_type",
                    operator: "==",
                    compare_with: ExpVal::STR("REGULAR"),
                    compare_as: "TEXT" // Also: "NUMBERS", "TIMESTAMPS"
                }),
                ("Exp2", Exp {
                    column: "invoice_data",
                    operator: ">",
                    compare_with: ExpVal::STR("2023-12-31 23:59:59"),
                    compare_as: "TEXT"
                }),
                ("Exp3", Exp {
                    column: "invoice_amount",
                    operator: "<",
                    compare_with: ExpVal::STR("1000"),
                    compare_as: "NUMBERS"
                }),
                ("Exp4", Exp {
                    column: "address",
                    operator: "FUZZ_MIN_SCORE_60",
                    compare_with: ExpVal::VEC(vec!["public school"]),
                    compare_as: "TEXT"
                })
            ],
            "Exp1 && (Exp2 || Exp3) && Exp4",
        )
        .print_row_count()
        .save_as("/path/to/modified/file.csv");

#### Chainable Options

    use rgwml::csv_utils::{CalibConfig, CsvBuilder, CsvConverter, CsvResultCacher, Exp, ExpVal, Piv, Train};

    CsvBuilder::from_csv("/path/to/your/file1.csv")
    // A. Calibrating an irrugularly formatted file
    .calibrate(
        CalibConfig {
            header_is_at_row: "21",
            rows_range_from: ("23", "*")
        }) // sets the row 21 content as the header, and row 23 to last row content as the data

    // B. Setting and adding headers
    .set_header(vec!["Header1", "Header2", "Header3"])
    .add_column_header("NewColumn1")
    .add_column_headers(vec!["NewColumn2", "NewColumn3"])
    
    // C. Ordering columns
    .order_columns(vec!["Column1", "...", "Column5", "Column2"])
    .order_columns(vec!["...", "Column5", "Column2"])
    .order_columns(vec!["Column1", "Column5", "..."])
    
    // D. Modifying columns
    .drop_columns(vec!["Column1", "Column3"])
    .rename_columns(vec![("Column1", "NewColumn1"), ("Column3", "NewColumn3")])
    
    // E. Adding and modifying rows
    .add_row(vec!["Row1-1", "Row1-2", "Row1-3"])
    .add_rows(vec![vec!["Row1-1", "Row1-2", "Row1-3"], vec!["Row2-1", "Row2-2", "Row2-3"]])
    .remove_duplicates()
    
    // F. Cleaning/ Replacing Cell values
    .trim_all() // Trims white spaces at the beginning and end of all cells in all columns.
    .replace_all(vec!["Column1", "Column2"], vec![("null", ""), ("NA", "-")]) // In specified columns
    .replace_all(vec!["*"], vec![("null", ""), ("NA", "-")]) // In all columns
    
    // G. Limiting and sorting
    .limit(10)
    .limit_where(
        10,
        vec![
            ("Exp1", Exp {
                column: "Withdrawal Amt.",
                operator: "<",
                compare_with: ExpVal::STR("1000"),
                compare_as: "NUMBERS" // Also: "TEXT", "TIMESTAMPS"
            }),
            ("Exp2", Exp {
                column: "Withdrawal Type",
                operator: "==",
                compare_with: ExpVal::STR("Urgent"),
                compare_as: "TEXT"
            }),
        ],
        "Exp1 && Exp2",
        "TAKE:FIRST" // Also: TAKE:LAST, TAKE:RANDOM
        )
    .cascade_sort(vec![("Column1", "DESC"), ("Column3", "ASC")])
    
    // H. Applying conditional operations
    .where_(
        vec![
            ("Exp1", Exp {
                column: "customer_type",
                operator: "==",
                compare_with: ExpVal::STR("REGULAR"),
                compare_as: "TEXT" // Also: "NUMBERS", "TIMESTAMPS"
            }),
            ("Exp2", Exp {
                column: "invoice_data",
                operator: ">",
                compare_with: ExpVal::STR("2023-12-31 23:59:59"),
                compare_as: "TEXT"
            }),
            ("Exp3", Exp {
                column: "invoice_amount",
                operator: "<",
                compare_with: ExpVal::STR("1000"),
                compare_as: "NUMBERS"
            }),
            ("Exp4", Exp {
                column: "address",
                operator: "FUZZ_MIN_SCORE_60",
                compare_with: ExpVal::VEC(vec!["public school"]),
                compare_as: "TEXT"
            }),
            ("Exp5", Exp {
                column: "status",
                operator: "CONTAINS",
                compare_with: ExpVal::STR("REJECTED"),
                compare_as: "TEXT"
            }),
            ("Exp6", Exp {
                column: "status",
                operator: "DOES_NOT_CONTAIN",
                compare_with: ExpVal::STR("HAS NOT PAID"),
                compare_as: "TEXT"
            }),
            ("Exp7", Exp {
                column: "status",
                operator: "STARTS_WITH",
                compare_with: ExpVal::STR("VERIFIED"),
                compare_as: "TEXT"
            }),
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6 && Exp7")
    .where_set(
        vec![
            // Same as .where() 
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6 && Exp7",
        "Column10",
        "IS OKAY")

    // I. Analytical Prints for data inspection
    .print_columns()
    .print_row_count()
    .print_first_row()
    .print_last_row()
    .print_rows_range(2,5) // Shows results per a spreadsheet row range
    .print_rows() // Shows results as per a spreadsheet row range
    .print_table() // Prints a truncated table to the terminal
    .print_cells(vec!["Column1", "Column2"])
    .print_unique("column_name")
    .print_freq(vec!["Column1", "Column2"])
    .print_freq_mapped(vec![
            ("Column1", vec![
                ("Delhi", vec!["New Delhi", "Delhi"]),
                ("UP", vec!["Ghaziabad", "Noida"])
            ]),
            ("Column2", vec![("NO_GROUPINGS", vec![])])
        ])
    .print_count_where(
        vec![
            // Same as .where()
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6 && Exp7")

    // J. Grouping Data
    .split_as("ColumnNameToGroupBy", "/output/folder/for/grouped/csv/files/") // Groups data by a specified column and saves each group into a separate CSV file in a given folder

    // K. Basic Set Theory Operations (for the Universe U = {1,2,3,4,5,6,7}, A = {1,2,3} and B = {3,4,5})
    .set_union_with("/path/to/set_b/file.csv", "UNION_TYPE:ALL") // {1,2,3,3,4,5} 
    .set_union_with("/path/to/set_b/file.csv", "UNION_TYPE:ALL_WITHOUT_DUPLICATES") // {1,2,3,4,5}
    .set_intersection_with("/path/to/set_b/file.csv") // {3}
    .set_difference_with("/path/to/set_b/file.csv") // {1,2} i.e. in A but not in B
    .set_symmetric_difference_with("/path/to/set_b/file.csv") // {1,2,4,5} i.e. in either, but not in intersection
    
    // .set_complement_with determines the compliment qua the universe i.e. {4,5,6,7}. Pass an exclusion vector to exclude specific columns of the universe from consideration, or use vec!["INCLUDE_ALL"] to include all columns of the universe.
    .set_complement_with("/path/to/universe_set_u/file.csv", vec!["INCLUDE_ALL"]) 
    .set_complement_with("/path/to/universe_set_u/file.csv", vec!["Column4", "Column5"]) 

    // L. Advanced Set Theory Operations
    .set_union_with("/path/to/table_b.csv", "UNION_TYPE:LEFT_JOIN_AT{{Column1}}") // Left join using "Column1" as the join column.
    .set_union_with("/path/to/table_b.csv", "UNION_TYPE:RIGHT_JOIN_AT{{Column1}}") // Right join using "ID" as the join column.

    // M. Append Derivative Columns
    .append_derived_boolean_column(
        "is_qualified_for_discount",
        vec![
            // Same as .where() 
        ],
        "Exp1 && (Exp2 || Exp3 || Exp4) && Exp5 && Exp6 && Exp7")
    .append_derived_category_column(
        "EXPENSE_RANGE",
        vec![
            (
                "< 1000",
                vec![
                    ("Exp1", Exp {
                        column: "Withdrawal Amt.",
                        operator: "<",
                        compare_with: ExpVal::STR("1000"),
                        compare_as: "NUMBERS" // Also: "TEXT", "TIMESTAMPS"
                    }),
                ],
                "Exp1"
            ),
            (
                "1000-5000",
                vec![
                    ("Exp1", Exp {
                        column: "Withdrawal Amt.",
                        operator: ">=",
                        compare_with: ExpVal::STR("1000"),
                        compare_as: "NUMBERS"
                    }),
                    ("Exp2", Exp {
                        column: "Withdrawal Amt.",
                        operator: "<",
                        compare_with: ExpVal::STR("5000"),
                        compare_as: "NUMBERS"
                    }),
                ],
                "Exp1 && Exp2"
            )
        )
    .append_derived_concatenation_column("NewColumnName", vec!["Column1", " ", "Column2", "@"]) // Items in the vector that are not column names will be concatenated as strings
    .append_fuzzai_analysis_columns(
        "Column1", // Name of column to be analyzed
        "sales_analysis", // Identifier for newly created columns
        vec![
            Train {
                input: "I want my money back",
                output: "refund"
            },
            Train {
                input: "I want a refund immediately",
                output: "refund"
            },
        ],
        "WORD_SPLIT:2", // The minimum length of word combinations that training data is to be broken into
        "WORD_LENGTH_SENSITIVITY:0.8", // Multiplies differences in word length between training data input and the value being analyzed by 0.8
        "GET_BEST:2" // Get the top 2 results, max value is 3
        )
    .append_fuzzai_analysis_columns_with_values_where(
        "Column1", // Name of column to be analyzed
        "sales_analysis", // Identifier for newly created column
        vec![
            Train {
                input: "I want my money back",
                output: "refund"
            },
            Train {
                input: "I want a refund immediately",
                output: "refund"
            },
        ],
        "WORD_SPLIT:2", // The minimum length of word combinations that training data is to be broken into
        "WORD_LENGTH_SENSITIVITY:0.8", // Multiplies differences in word length between training data input and the value being analyzed by 0.8
        "GET_BEST:2", // Get the top 2 results, max value is 3
        vec![
            ("Exp1", Exp {
                column: "Deposit Amt.",
                operator: ">",
                compare_with: ExpVal::STR("500"),
                compare_as: "NUMBERS" // Also: "TEXT", "TIMESTAMPS"
            }),
        ],
        "Exp1", // Filters rows where fuzzai analysis would be applied
        )
    .split_date_as_appended_category_columns("Column10", "%d/%m/%y") // Appends additional columns splitting a date/timestamp into categorization columns by year, month and week

    // N. Pivot Tables
    .pivot_as(
        "/path/to/save/the/pivot/file/as/csv",
        Piv {
            index_at: "month",
            values_from: "sales",
            operation: "MEDIAN",
            seggregate_by: vec![
                ("is_customer", "AS_BOOLEAN") // Is appended directly as a seggregation column
                ("acquisition_type", "AS_CATEGORY") // The unique values of this column are appended as seggregation columns
            ],
        })

    // O. Save
    .save_as("/path/to/your/file2.csv")

    // P. Die
    .die() // Gracefully terminates execution of a CsvBuilder chain

#### Extract Data

These methods return specific data, instead of a mutable CsvBuilder object, and hence, can not be subsequently chained.

    CsvBuilder::from_csv("/path/to/your/file1.csv")

    .get_unique("column_name"); // Returns a Vec<String>
    .get("column_name"); // Returns cell content as a String, if the csv has been filtered to single row.
    .get_freq(vec!["Column1", Column2]) // Returns a HashMap where keys are column names and values are vectors of sorted (value, frequency) pairs.
    .get_freq_mapped(vec![
            ("Column1", vec![
                ("Delhi", vec!["New Delhi", "Delhi"]),
                ("UP", vec!["Ghaziabad", "Noida"])
            ]),
            ("Column2", vec![("NO_GROUPINGS", vec![])])
        ])
    .has_data() // Returns `true` if either headers or data rows are present, `false` otherwise.
    .has_headers() // Returns `true` if headers are present, `false` otherwise.
    .get_headers() // Returns an Option<&[String]> containing a reference to the headers if present, `None` otherwise.
    .get_data() // Returns a reference to the data contained in the builder as a &Vec<Vec<String>>.

### CsvResultCacher

    use rgwml::api_utils::ApiCallBuilder;
    use rgwml::csv_utils::{CsvBuilder, CsvResultCacher};
    use serde_json::json;
    use tokio;

    async fn generate_daily_sales_report() -> Result<(), Box<dyn std::error::Error>> {
        async fn fetch_sales_data_from_api() -> Result<String, Box<dyn std::error::Error>> {
            let method = "POST";
            let url = "http://example.com/api/sales"; // API URL to fetch sales data

            let payload = json!({
                "date": "2023-12-21"
            });

            let response = ApiCallBuilder::call(method, url, None, Some(payload))
                .execute()
                .await?;

            Ok(response)
        }

        let sales_data_response = fetch_sales_data_from_api().await?;

        // Convert the JSON response to CSV format using CsvBuilder
        let csv_builder = CsvBuilder::from_api_call(sales_data_response)
            .await
            .unwrap()
            .save_as("/path/to/daily/sales/report/cache.csv");

        Ok(())
    }

    #[tokio::main]
    async fn main() {
        let cache_path = "/path/to/daily_sales_report.csv";
        let cache_duration_minutes = 1440; // Cache duration set to 1 day

        let result = CsvResultCacher::fetch_async(
            || Box::pin(generate_daily_sales_report()),
            "/path/to/daily/sales/report/cache.csv",
            cache_duration_minutes,
        ).await;

        match result {
            Ok(_) => println!("Sales report is ready."),
            Err(e) => eprintln!("Failed to generate sales report: {}", e),
        }
    }

4. `ai_utils`
-----------

This library provides simple AI utilities for neural association analysis. It focuses on processing and analyzing data within neural networks, with an emphasis on understanding AI decision-making processes and text analysis, optimized for a parallel computing environment.

Features

- **Direct CSV Input**: Utilize CSV file paths directly, specifying input and output column names, to facilitate neural association analysis.
- **Parallel Processing**: Leverage parallel computing to efficiently analyze neural associations, gaining insights into AI decision-making processes.

Example

    use rgwml::ai_utils::{fuzzai, SplitUpto, ShowComplications, WordLengthSensitivity};
    use std::error::Error;

    #[tokio::main]
    async fn main() {
        // Call the fuzzai function with CSV file path
        let fuzzai_result = fuzzai(
            "path/to/your/model/training/csv/file.csv",
            "model_training_input_column_name",
            "model_training_output_column_name",
            "your text to be analyzed against the training data model",
            "your task description: clustering customer complaints",
            SplitUpto::WordSetLength(2), // Set the minimum word length of combination value to split the training input data during the analysis
            ShowComplications::False, // Set to True to see inner workings of the model
            WordLengthSensitivity::Coefficient(0.2), // Set to Coefficient::None to disregard differences in the word length of the training input and the text being analyzed; Increase the coefficient to give higher weightage to matches with similar word length
        ).await.expect("Analysis should succeed");

        dbg!(fuzzai_result);
    }

5. `api_utils`
------------

Examples across common API call patterns

    use serde_json::json;
    use rgwml::api_utils::ApiCallBuilder;
    use std::collections::HashMap;

    #[tokio::main]
    async fn main() {
        // Fetch and cache post request without headers
        let response = fetch_and_cache_post_request().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch data: {}", e);
            std::process::exit(1);
        });
        println!("Response: {:?}", response);

        // Fetch and cache post request with headers
        let response_with_headers = fetch_and_cache_post_request_with_headers().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch data with headers: {}", e);
            std::process::exit(1);
        });
        println!("Response with headers: {:?}", response_with_headers);

        // Fetch and cache post request with form URL encoded content type
        let response_form_urlencoded = fetch_and_cache_post_request_form_urlencoded().await.unwrap_or_else(|e| {
            eprintln!("Failed to fetch form URL encoded data: {}", e);
            std::process::exit(1);
        });
        println!("Form URL encoded response: {:?}", response_form_urlencoded);
    }

    // Example 1: Without Headers
    async fn fetch_and_cache_post_request() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/submit";
        let payload = json!({
            "field1": "Hello",
            "field2": 123
        });

        let response = ApiCallBuilder::call(method, url, None, Some(payload))
            .maintain_cache(30, "/path/to/post_cache.json") // Uses cache for 30 minutes
            .execute()
            .await?;

        Ok(response)
    }

    // Example 2: With Headers
    async fn fetch_and_cache_post_request_with_headers() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/submit";
        let headers = json!({
            "Content-Type": "application/json",
            "Authorization": "Bearer your_token_here"
        });
        let payload = json!({
            "field1": "Hello",
            "field2": 123
        });

        let response = ApiCallBuilder::call(method, url, Some(headers), Some(payload))
            .maintain_cache(30, "/path/to/post_with_headers_cache.json") // Uses cache for 30 minutes
            .execute()
            .await?;

        Ok(response)
    }

    // Example 3: With application/x-www-form-urlencoded Content-Type
    async fn fetch_and_cache_post_request_form_urlencoded() -> Result<String, Box<dyn std::error::Error>> {
        let method = "POST";
        let url = "http://example.com/api/submit";
        let headers = json!({
            "Content-Type": "application/x-www-form-urlencoded"
        });
        let payload = HashMap::from([
            ("field1", "value1"),
            ("field2", "value2"),
        ]);

        let response = ApiCallBuilder::call(method, url, Some(headers), Some(payload))
            .maintain_cache(30, "/path/to/post_form_urlencoded_cache.json") // Uses cache for 30 minutes
            .execute()
            .await?;

        Ok(response)
    }

6. `loop_utils`
-------------

### FutureLoop

`FutureLoop` provides a fluent interface to do multiple things at once (asynchronously) when dealing with a list or collection of items. 

The `future_for` function suits scenarios where you need a moderate level of concurrency. For instance, when each item's processing is relatively straightforward and doesn't require complex shared state or high-throughput parallelism. 

    use rgwml::loop_utils::FutureLoop;

    #[tokio::main()]
    async fn main() {
        let data = vec![1, 2, 3, 4, 5];
        let results = FutureLoop::future_for(data, |num| async move {
            // Perform an async operation
            num * 2
        }).await;
        println!("Results: {:?}", results);
    }

7. License
----------

This project is licensed under the MIT License - see the LICENSE file for details.