rfm69 0.3.0

A generic rust driver to support RFM69 family wireless chips
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//! A generic rust driver to support RFM69 family wireless chips. This crate uses
//! [`embedded_hal`](https://github.com/rust-embedded/embedded-hal) traits.
//!
//!
//! ## Supported devices
//!
//!
//! ### RFM69W
//! - Low power variant
//! - [Product page](https://www.hoperf.com/modules/rf_transceiver/RFM69W.html)
//! - [Datasheet](https://www.hoperf.com/data/upload/portal/20191105/RFM69%20Specification.pdf)
//!
//! ### RFM69CW
//! - Low power variant, pinout is compatible with popular RFM12B
//! - [Product page](https://www.hoperf.com/modules/rf_transceiver/RFM69C.html)
//! - [Datasheet](https://www.hoperf.com/data/upload/portal/20190307/RFM69CW-V1.1.pdf)
//!
//! ### RFM69HW
//! - High power variant
//! - [Product page](https://www.hoperf.com/%20modules/rf_transceiver/RFM69HW.html)
//! - [Datasheet](https://www.hoperf.com/data/upload/portal/20190306/RFM69HW-V1.3%20Datasheet.pdf)
//!
//! ### RFM69HCW
//! - High power variant, pinout is compatible with popular RFM12B
//! - [Product page](https://www.hoperf.com/modules/rf_transceiver/RFM69HCW.html)
//! - [Datasheet](https://www.hoperf.com/data/upload/portal/20190307/RFM69HCW-V1.1.pdf)

#![no_std]

#[cfg(test)]
#[macro_use]
extern crate std;

pub mod registers;

use embedded_hal::blocking::delay::DelayMs;
use embedded_hal::blocking::spi::Transfer;
use embedded_hal::digital::v2::OutputPin;

use core::marker::PhantomData;
use registers::{
    DataMode, DioMapping, DioPin, FifoMode, InterPacketRxDelay, Mode, Modulation,
    ModulationShaping, ModulationType, PacketConfig, PacketDc, PacketFiltering, PacketFormat,
    Registers,
};

const FOSC: f32 = 32_000_000.0;
const FSTEP: f32 = FOSC / 524_288.0; // FOSC/2^19

type Result<T, Ecs, Espi> = core::result::Result<T, Error<Ecs, Espi>>;

#[derive(Debug)]
pub enum Error<Ecs, Espi> {
    // Chip select pin error
    Cs(Ecs),
    // SPI bus error
    Spi(Espi),
    // Timeout exceeded
    Timeout,
    // Aes key size is too big
    AesKeySize,
    // Sync sequence is too long
    SyncSize,
}

/// Main struct to interact with RFM69 chip.
pub struct Rfm69<T, S, D> {
    spi: S,
    cs: T,
    delay: D,
    mode: Mode,
    dio: [Option<DioMapping>; 6],
    rssi: f32,
}

impl<T, S, D, Ecs, Espi> Rfm69<T, S, D>
where
    T: OutputPin<Error = Ecs>,
    S: Transfer<u8, Error = Espi>,
    D: DelayMs<u8>,
{
    /// Creates a new instance with everything set to default values after restart.
    pub fn new(spi: S, cs: T, delay: D) -> Self {
        Rfm69 {
            spi,
            cs,
            delay,
            mode: Mode::Standby,
            dio: [None; 6],
            rssi: 0.0,
        }
    }

    /// Reads content of all registers that are available.
    pub fn read_all_regs(&mut self) -> Result<[u8; 0x4f], Ecs, Espi> {
        let mut buffer = [0u8; 0x4f];
        self.read_many(Registers::OpMode, &mut buffer)?;
        Ok(buffer)
    }

    /// Sets the mode in corresponding register `RegOpMode (0x01)`.
    pub fn mode(&mut self, mode: Mode) -> Result<(), Ecs, Espi> {
        let val = mode as u8;
        self.update(Registers::OpMode, |r| (r & 0xe3) | val)?;
        self.mode = mode;
        self.dio()
    }

    /// Sets the modulation in corresponding register `RegDataModul (0x02)`.
    pub fn modulation(&mut self, modulation: Modulation) -> Result<(), Ecs, Espi> {
        self.write(Registers::DataModul, modulation.value())
    }

    /// Computes the bitrate, according to `Fosc / bit_rate` and stores it in
    /// `RegBitrateMsb (0x03), RegBitrateLsb (0x04)`.
    pub fn bit_rate(&mut self, bit_rate: f32) -> Result<(), Ecs, Espi> {
        let reg = (FOSC / bit_rate) as u16;
        let mut val = reg.to_be_bytes();
        self.write_many(Registers::BitrateMsb, &mut val)
    }

    /// Computes the frequency deviation, according to `fdev / Fstep` and stores it in
    /// `RegFdevMsb (0x05), RegFdevLsb (0x06)`.
    pub fn fdev(&mut self, fdev: f32) -> Result<(), Ecs, Espi> {
        let reg = (fdev / FSTEP) as u16;
        let mut val = reg.to_be_bytes();
        self.write_many(Registers::FdevMsb, &mut val)
    }

    /// Computes the radio frequency, according to `frequency / Fstep` and stores it in
    /// `RegFrfMsb (0x07), RegFrfMid (0x08), RegFrfLsb (0x09)`.
    pub fn frequency(&mut self, frequency: f32) -> Result<(), Ecs, Espi> {
        let reg = (frequency / FSTEP) as u32;
        let mut val = reg.to_be_bytes();
        self.write_many(Registers::FrfMsb, &mut val[1..])
    }

    /// Stores DIO mapping for different RFM69 modes. For DIO behavior between modes
    /// please refer to the corresponding table in RFM69 datasheet.
    pub fn dio_mapping(&mut self, mapping: DioMapping) -> Result<(), Ecs, Espi> {
        let pin = mapping.pin;
        let dio = Some(mapping);
        match pin {
            DioPin::Dio0 => self.dio[0] = dio,
            DioPin::Dio1 => self.dio[1] = dio,
            DioPin::Dio2 => self.dio[2] = dio,
            DioPin::Dio3 => self.dio[3] = dio,
            DioPin::Dio4 => self.dio[4] = dio,
            DioPin::Dio5 => self.dio[5] = dio,
        }
        self.dio()
    }

    /// Clears stored DIO mapping for specified pin.
    pub fn clear_dio(&mut self, pin: DioPin) -> Result<(), Ecs, Espi> {
        match pin {
            DioPin::Dio0 => self.dio[0] = None,
            DioPin::Dio1 => self.dio[1] = None,
            DioPin::Dio2 => self.dio[2] = None,
            DioPin::Dio3 => self.dio[3] = None,
            DioPin::Dio4 => self.dio[4] = None,
            DioPin::Dio5 => self.dio[5] = None,
        }
        self.dio()
    }

    /// Sets preamble length in corresponding registers `RegPreambleMsb (0x2C),
    /// RegPreambleLsb (0x2D)`.
    pub fn preamble(&mut self, reg: u16) -> Result<(), Ecs, Espi> {
        let mut val = reg.to_be_bytes();
        self.write_many(Registers::PreambleMsb, &mut val)
    }

    /// Sets sync config and sync words in `RegSyncConfig (0x2E), RegSyncValue1-8(0x2F-0x36)`.
    /// Maximal sync length is 8, pass empty buffer to clear the sync flag.
    pub fn sync(&mut self, sync: &mut [u8]) -> Result<(), Ecs, Espi> {
        let len = sync.len();
        if len == 0 {
            return self.update(Registers::SyncConfig, |r| r & 0x7f);
        } else if len > 8 {
            Err(Error::SyncSize)?;
        }
        let reg = 0x80 | ((len - 1) as u8) << 3;
        self.write(Registers::SyncConfig, reg)?;
        self.write_many(Registers::SyncValue1, sync)
    }

    /// Sets packet settings in corresponding registers `RegPacketConfig1 (0x37),
    /// RegPayloadLength (0x38), RegPacketConfig2 (0x3D)`.
    pub fn packet(&mut self, packet_config: PacketConfig) -> Result<(), Ecs, Espi> {
        let len: u8;
        let mut reg = 0x00;
        match packet_config.format {
            PacketFormat::Fixed(size) => len = size,
            PacketFormat::Variable(size) => {
                len = size;
                reg |= 0x80;
            }
        }
        reg |=
            packet_config.dc as u8 | packet_config.filtering as u8 | (packet_config.crc as u8) << 4;
        let mut val = [reg, len];
        self.write_many(Registers::PacketConfig1, &mut val)?;
        reg = packet_config.interpacket_rx_delay as u8 | (packet_config.auto_rx_restart as u8) << 1;
        self.update(Registers::PacketConfig2, |r| r & 0x0d | reg)
    }

    /// Sets node address in corresponding register `RegNodeAdrs (0x39)`.
    pub fn node_address(&mut self, a: u8) -> Result<(), Ecs, Espi> {
        self.write(Registers::NodeAddrs, a)
    }

    /// Sets broadcast address in corresponding register `RegBroadcastAdrs (0x3A)`.
    pub fn broadcast_address(&mut self, a: u8) -> Result<(), Ecs, Espi> {
        self.write(Registers::BroadcastAddrs, a)
    }

    /// Sets FIFO mode in corresponding register `RegFifoThresh (0x3C)`.
    pub fn fifo_mode(&mut self, mode: FifoMode) -> Result<(), Ecs, Espi> {
        match mode {
            FifoMode::NotEmpty => self.update(Registers::FifoThresh, |r| r | 0x80),
            FifoMode::Level(level) => self.write(Registers::FifoThresh, level & 0x7f),
        }
    }

    /// Sets AES encryption in corresponding registers `RegPacketConfig2 (0x3D),
    /// RegAesKey1-16 (0x3E-0x4D)`. The key must be 16 bytes long, pass empty buffer to disable
    /// the AES encryption.
    pub fn aes(&mut self, key: &mut [u8]) -> Result<(), Ecs, Espi> {
        let len = key.len();
        if len == 0 {
            return self.update(Registers::PacketConfig2, |r| r & 0xfe);
        } else if len == 16 {
            self.update(Registers::PacketConfig2, |r| r | 0x01)?;
            return self.write_many(Registers::AesKey1, key);
        }
        Err(Error::AesKeySize)
    }

    /// Last RSSI value that was computed during receive.
    pub fn rssi(&self) -> f32 {
        self.rssi
    }

    /// Receive bytes from another RFM69. This call blocks until there are any
    /// bytes available. This can be combined with DIO interrupt for `PayloadReady`, calling
    /// `recv` immediately after the interrupt should not block.
    pub fn recv(&mut self, buffer: &mut [u8]) -> Result<(), Ecs, Espi> {
        if buffer.is_empty() {
            return Ok(());
        }

        self.mode(Mode::Receiver)?;
        self.wait_mode_ready()?;

        while !self.is_packet_ready()? {}

        self.mode(Mode::Standby)?;
        self.read_many(Registers::Fifo, buffer)?;
        self.rssi = self.read(Registers::RssiValue)? as f32 / -2.0;
        Ok(())
    }

    /// Send bytes to another RFM69. This can block until all data are send.
    pub fn send(&mut self, buffer: &mut [u8]) -> Result<(), Ecs, Espi> {
        if buffer.is_empty() {
            return Ok(());
        }

        self.mode(Mode::Standby)?;
        self.wait_mode_ready()?;

        self.reset_fifo()?;

        self.write_many(Registers::Fifo, buffer)?;
        self.mode(Mode::Transmitter)?;
        self.wait_packet_sent()?;

        self.mode(Mode::Standby)
    }

    /// Check if IRQ flag PacketReady is set.
    pub fn is_packet_ready(&mut self) -> Result<bool, Ecs, Espi> {
        Ok(self.read(Registers::IrqFlags2)? & 0x04 != 0)
    }

    fn dio(&mut self) -> Result<(), Ecs, Espi> {
        let mut reg = 0x07;
        for opt_mapping in self.dio.iter() {
            if let Some(mapping) = opt_mapping {
                if mapping.dio_mode.eq(self.mode) {
                    reg |= (mapping.dio_type as u16) << (mapping.pin as u16);
                }
            }
        }
        let mut val = reg.to_be_bytes();
        self.write_many(Registers::DioMapping1, &mut val)
    }

    fn reset_fifo(&mut self) -> Result<(), Ecs, Espi> {
        self.write(Registers::IrqFlags2, 0x10)
    }

    fn wait_mode_ready(&mut self) -> Result<(), Ecs, Espi> {
        self.with_timeout(100, 5, |rfm| {
            Ok((rfm.read(Registers::IrqFlags1)? & 0x80) != 0)
        })
    }

    fn wait_packet_sent(&mut self) -> Result<(), Ecs, Espi> {
        self.with_timeout(100, 5, |rfm| {
            Ok((rfm.read(Registers::IrqFlags2)? & 0x08) != 0)
        })
    }

    fn with_timeout<F>(&mut self, timeout: u8, step: u8, func: F) -> Result<(), Ecs, Espi>
    where
        F: Fn(&mut Rfm69<T, S, D>) -> Result<bool, Ecs, Espi>,
    {
        let mut done = func(self)?;
        let mut count = 0;
        while !done && count < timeout {
            self.delay.delay_ms(step);
            count += step;
            done = func(self)?;
        }
        if !done {
            Err(Error::Timeout)?;
        }
        Ok(())
    }

    fn update<F>(&mut self, reg: Registers, f: F) -> Result<(), Ecs, Espi>
    where
        F: FnOnce(u8) -> u8,
    {
        let val = self.read(reg)?;
        self.write(reg, f(val))
    }

    fn write(&mut self, reg: Registers, val: u8) -> Result<(), Ecs, Espi> {
        self.write_many(reg, &mut [val])
    }

    fn write_many(&mut self, reg: Registers, data: &mut [u8]) -> Result<(), Ecs, Espi> {
        let mut guard = CsGuard::new(&mut self.cs);
        guard.select()?;
        self.spi.transfer(&mut [reg.write()]).map_err(Error::Spi)?;
        self.spi.transfer(data).map_err(Error::Spi)?;
        Ok(())
    }

    fn read(&mut self, reg: Registers) -> Result<u8, Ecs, Espi> {
        let mut buffer = [0u8; 1];
        self.read_many(reg, &mut buffer)?;
        Ok(buffer[0])
    }

    fn read_many(&mut self, reg: Registers, buffer: &mut [u8]) -> Result<(), Ecs, Espi> {
        let mut guard = CsGuard::new(&mut self.cs);
        guard.select()?;
        self.spi.transfer(&mut [reg.read()]).map_err(Error::Spi)?;
        self.spi.transfer(buffer).map_err(Error::Spi)?;
        Ok(())
    }
}

struct CsGuard<'a, T, Ecs, Espi>
where
    T: OutputPin<Error = Ecs>,
{
    cs: &'a mut T,
    _phantom: PhantomData<Espi>,
}

impl<'a, T, Ecs, Espi> CsGuard<'a, T, Ecs, Espi>
where
    T: OutputPin<Error = Ecs>,
{
    fn new(pin: &'a mut T) -> Self {
        CsGuard {
            cs: pin,
            _phantom: PhantomData,
        }
    }

    fn select(&mut self) -> Result<(), Ecs, Espi> {
        self.cs.set_low().map_err(Error::Cs)
    }

    fn unselect(&mut self) -> Result<(), Ecs, Espi> {
        self.cs.set_high().map_err(Error::Cs)
    }
}

impl<'a, T, Ecs, Espi> Drop for CsGuard<'a, T, Ecs, Espi>
where
    T: OutputPin<Error = Ecs>,
{
    fn drop(&mut self) {
        if self.unselect().is_err() {
            panic!("Cannot clear CS guard");
        }
    }
}

/// Configures RFM69 according to [LowPowerLab](https://github.com/LowPowerLab/RFM69) Arduino
/// library
pub fn low_power_lab_defaults<T, S, D, Ecs, Espi>(
    mut rfm: Rfm69<T, S, D>,
    network_id: u8,
    frequency: f32,
) -> Result<Rfm69<T, S, D>, Ecs, Espi>
where
    T: OutputPin<Error = Ecs>,
    S: Transfer<u8, Error = Espi>,
    D: DelayMs<u8>,
{
    rfm.mode(Mode::Standby)?;
    rfm.modulation(Modulation {
        data_mode: DataMode::Packet,
        modulation_type: ModulationType::Fsk,
        shaping: ModulationShaping::Shaping00,
    })?;
    rfm.bit_rate(55_555.0)?;
    rfm.frequency(frequency)?;
    rfm.fdev(50_000.0)?;
    rfm.write(Registers::RxBw, 0x42)?;
    rfm.preamble(3)?;
    rfm.sync(&mut [0x2d, network_id])?;
    rfm.packet(PacketConfig {
        format: PacketFormat::Variable(66),
        dc: PacketDc::None,
        filtering: PacketFiltering::None,
        crc: true,
        interpacket_rx_delay: InterPacketRxDelay::Delay2Bits,
        auto_rx_restart: true,
    })?;
    rfm.fifo_mode(FifoMode::NotEmpty)?;
    Ok(rfm)
}

#[cfg(test)]
mod tests;