regalloc2/
lib.rs

1/*
2 * The following license applies to this file, which derives many
3 * details (register and constraint definitions, for example) from the
4 * files `BacktrackingAllocator.h`, `BacktrackingAllocator.cpp`,
5 * `LIR.h`, and possibly definitions in other related files in
6 * `js/src/jit/`:
7 *
8 * This Source Code Form is subject to the terms of the Mozilla Public
9 * License, v. 2.0. If a copy of the MPL was not distributed with this
10 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 */
12
13#![allow(dead_code)]
14#![allow(clippy::all)]
15#![no_std]
16
17#[cfg(feature = "std")]
18extern crate std;
19
20extern crate alloc;
21
22// Even when trace logging is disabled, the trace macro has a significant
23// performance cost so we disable it in release builds.
24macro_rules! trace {
25    ($($tt:tt)*) => {
26        if cfg!(feature = "trace-log") {
27            ::log::trace!($($tt)*);
28        }
29    };
30}
31
32macro_rules! trace_enabled {
33    () => {
34        cfg!(feature = "trace-log") && ::log::log_enabled!(::log::Level::Trace)
35    };
36}
37
38use alloc::rc::Rc;
39use allocator_api2::vec::Vec as Vec2;
40use core::ops::Deref as _;
41use core::{hash::BuildHasherDefault, iter::FromIterator};
42use rustc_hash::FxHasher;
43type FxHashMap<K, V> = hashbrown::HashMap<K, V, BuildHasherDefault<FxHasher>>;
44type FxHashSet<V> = hashbrown::HashSet<V, BuildHasherDefault<FxHasher>>;
45
46pub(crate) mod cfg;
47pub(crate) mod domtree;
48pub(crate) mod fastalloc;
49pub mod indexset;
50pub(crate) mod ion;
51pub(crate) mod moves;
52pub(crate) mod postorder;
53pub mod ssa;
54
55#[macro_use]
56mod index;
57
58pub use self::ion::data_structures::Ctx;
59use alloc::vec::Vec;
60pub use index::{Block, Inst, InstRange};
61
62pub mod checker;
63
64#[cfg(feature = "fuzzing")]
65pub mod fuzzing;
66
67#[cfg(feature = "enable-serde")]
68pub mod serialize;
69
70#[cfg(feature = "enable-serde")]
71use serde::{Deserialize, Serialize};
72
73/// Register classes.
74///
75/// Every value has a "register class", which is like a type at the
76/// register-allocator level. Every register must belong to only one
77/// class; i.e., they are disjoint.
78///
79/// For tight bit-packing throughout our data structures, we support
80/// only three classes, "int", "float" and "vector". Usually two will
81/// be enough on modern machines, as they have one class of general-purpose
82/// integer registers of machine width (e.g. 64 bits), and another
83/// class of float/vector registers used both for FP and for vector
84/// operations. Additionally for machines with totally separate vector
85/// registers a third class is provided.
86#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
87#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
88pub enum RegClass {
89    Int = 0,
90    Float = 1,
91    Vector = 2,
92}
93
94/// A physical register. Contains a physical register number and a class.
95///
96/// The `hw_enc` field contains the physical register number and is in
97/// a logically separate index space per class; in other words, Int
98/// register 0 is different than Float register 0.
99///
100/// Because of bit-packed encodings throughout the implementation,
101/// `hw_enc` must fit in 6 bits, i.e., at most 64 registers per class.
102///
103/// The value returned by `index()`, in contrast, is in a single index
104/// space shared by all classes, in order to enable uniform reasoning
105/// about physical registers. This is done by putting the class bit at
106/// the MSB, or equivalently, declaring that indices 0..=63 are the 64
107/// integer registers and indices 64..=127 are the 64 float registers.
108#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
109#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
110pub struct PReg {
111    bits: u8,
112}
113
114impl PReg {
115    pub const MAX_BITS: usize = 6;
116    pub const MAX: usize = (1 << Self::MAX_BITS) - 1;
117    pub const NUM_INDEX: usize = 1 << (Self::MAX_BITS + 2); // including RegClass bits
118    pub const INVALID: u8 = ((RegClass::Int as u8) << Self::MAX_BITS) | (Self::MAX as u8);
119
120    /// Create a new PReg. The `hw_enc` range is 6 bits.
121    #[inline(always)]
122    pub const fn new(hw_enc: usize, class: RegClass) -> Self {
123        debug_assert!(hw_enc <= PReg::MAX);
124        PReg {
125            bits: ((class as u8) << Self::MAX_BITS) | (hw_enc as u8),
126        }
127    }
128
129    /// The physical register number, as encoded by the ISA for the particular register class.
130    #[inline(always)]
131    pub const fn hw_enc(self) -> usize {
132        self.bits as usize & Self::MAX
133    }
134
135    /// The register class.
136    #[inline(always)]
137    pub const fn class(self) -> RegClass {
138        match (self.bits >> Self::MAX_BITS) & 0b11 {
139            0 => RegClass::Int,
140            1 => RegClass::Float,
141            2 => RegClass::Vector,
142            _ => unreachable!(),
143        }
144    }
145
146    /// Get an index into the (not necessarily contiguous) index space of
147    /// all physical registers. Allows one to maintain an array of data for
148    /// all PRegs and index it efficiently.
149    #[inline(always)]
150    pub const fn index(self) -> usize {
151        self.bits as usize
152    }
153
154    /// Construct a PReg from the value returned from `.index()`.
155    #[inline(always)]
156    pub const fn from_index(index: usize) -> Self {
157        PReg {
158            bits: (index & (Self::NUM_INDEX - 1)) as u8,
159        }
160    }
161
162    /// Return the "invalid PReg", which can be used to initialize
163    /// data structures.
164    #[inline(always)]
165    pub const fn invalid() -> Self {
166        PReg {
167            bits: Self::INVALID,
168        }
169    }
170
171    /// Return a valid [`PReg`] or [`None`] if it is invalid.
172    #[inline(always)]
173    pub const fn as_valid(self) -> Option<Self> {
174        if self.bits == Self::INVALID {
175            None
176        } else {
177            Some(self)
178        }
179    }
180}
181
182impl Default for PReg {
183    fn default() -> Self {
184        Self::invalid()
185    }
186}
187
188impl core::fmt::Debug for PReg {
189    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
190        write!(
191            f,
192            "PReg(hw = {}, class = {:?}, index = {})",
193            self.hw_enc(),
194            self.class(),
195            self.index()
196        )
197    }
198}
199
200impl core::fmt::Display for PReg {
201    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
202        let class = match self.class() {
203            RegClass::Int => "i",
204            RegClass::Float => "f",
205            RegClass::Vector => "v",
206        };
207        write!(f, "p{}{}", self.hw_enc(), class)
208    }
209}
210
211/// A type for internal bit arrays.
212type Bits = u64;
213
214/// A physical register set. Used to represent clobbers
215/// efficiently.
216///
217/// The set is `Copy` and is guaranteed to have constant, and small,
218/// size, as it is based on a bitset internally.
219#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
220#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
221pub struct PRegSet {
222    bits: [Bits; Self::LEN],
223}
224
225impl PRegSet {
226    /// The number of bits per element in the internal bit array.
227    const BITS: usize = core::mem::size_of::<Bits>() * 8;
228
229    /// Length of the internal bit array.
230    const LEN: usize = (PReg::NUM_INDEX + Self::BITS - 1) / Self::BITS;
231
232    /// Create an empty set.
233    pub const fn empty() -> Self {
234        Self {
235            bits: [0; Self::LEN],
236        }
237    }
238
239    /// Splits the given register index into parts to access the internal bit array.
240    const fn split_index(reg: PReg) -> (usize, usize) {
241        let index = reg.index();
242        (index >> Self::BITS.ilog2(), index & (Self::BITS - 1))
243    }
244
245    /// Returns whether the given register is part of the set.
246    pub fn contains(&self, reg: PReg) -> bool {
247        let (index, bit) = Self::split_index(reg);
248        self.bits[index] & (1 << bit) != 0
249    }
250
251    /// Add a physical register (PReg) to the set, returning the new value.
252    pub const fn with(self, reg: PReg) -> Self {
253        let (index, bit) = Self::split_index(reg);
254        let mut out = self;
255        out.bits[index] |= 1 << bit;
256        out
257    }
258
259    /// Add a physical register (PReg) to the set.
260    pub fn add(&mut self, reg: PReg) {
261        let (index, bit) = Self::split_index(reg);
262        self.bits[index] |= 1 << bit;
263    }
264
265    /// Remove a physical register (PReg) from the set.
266    pub fn remove(&mut self, reg: PReg) {
267        let (index, bit) = Self::split_index(reg);
268        self.bits[index] &= !(1 << bit);
269    }
270
271    /// Add all of the registers in one set to this one, mutating in
272    /// place.
273    pub fn union_from(&mut self, other: PRegSet) {
274        for i in 0..self.bits.len() {
275            self.bits[i] |= other.bits[i];
276        }
277    }
278
279    pub fn intersect_from(&mut self, other: PRegSet) {
280        for i in 0..self.bits.len() {
281            self.bits[i] &= other.bits[i];
282        }
283    }
284
285    pub fn invert(&self) -> PRegSet {
286        let mut set = self.bits;
287        for i in 0..self.bits.len() {
288            set[i] = !self.bits[i];
289        }
290        PRegSet { bits: set }
291    }
292
293    pub fn is_empty(&self, regclass: RegClass) -> bool {
294        self.bits[regclass as usize] == 0
295    }
296}
297
298impl core::ops::BitAnd<PRegSet> for PRegSet {
299    type Output = PRegSet;
300
301    fn bitand(self, rhs: PRegSet) -> Self::Output {
302        let mut out = self;
303        out.intersect_from(rhs);
304        out
305    }
306}
307
308impl core::ops::BitOr<PRegSet> for PRegSet {
309    type Output = PRegSet;
310
311    fn bitor(self, rhs: PRegSet) -> Self::Output {
312        let mut out = self;
313        out.union_from(rhs);
314        out
315    }
316}
317
318impl IntoIterator for PRegSet {
319    type Item = PReg;
320    type IntoIter = PRegSetIter;
321    fn into_iter(self) -> PRegSetIter {
322        PRegSetIter {
323            bits: self.bits,
324            cur: 0,
325        }
326    }
327}
328
329pub struct PRegSetIter {
330    bits: [Bits; PRegSet::LEN],
331    cur: usize,
332}
333
334impl Iterator for PRegSetIter {
335    type Item = PReg;
336    fn next(&mut self) -> Option<PReg> {
337        loop {
338            let bits = self.bits.get_mut(self.cur)?;
339            if *bits != 0 {
340                let bit = bits.trailing_zeros();
341                *bits &= !(1 << bit);
342                let index = bit as usize + self.cur * PRegSet::BITS;
343                return Some(PReg::from_index(index));
344            }
345            self.cur += 1;
346        }
347    }
348}
349
350impl From<&MachineEnv> for PRegSet {
351    fn from(env: &MachineEnv) -> Self {
352        let mut res = Self::default();
353
354        for class in env.preferred_regs_by_class.iter() {
355            for preg in class {
356                res.add(*preg)
357            }
358        }
359
360        for class in env.non_preferred_regs_by_class.iter() {
361            for preg in class {
362                res.add(*preg)
363            }
364        }
365
366        res
367    }
368}
369
370impl FromIterator<PReg> for PRegSet {
371    fn from_iter<T: IntoIterator<Item = PReg>>(iter: T) -> Self {
372        let mut set = Self::default();
373        for preg in iter {
374            set.add(preg);
375        }
376        set
377    }
378}
379
380impl core::fmt::Display for PRegSet {
381    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
382        write!(f, "{{")?;
383        for preg in self.into_iter() {
384            write!(f, "{preg}, ")?;
385        }
386        write!(f, "}}")
387    }
388}
389
390/// A virtual register. Contains a virtual register number and a
391/// class.
392///
393/// A virtual register ("vreg") corresponds to an SSA value. All
394/// dataflow in the input program is specified via flow through a
395/// virtual register; even uses of specially-constrained locations,
396/// such as fixed physical registers, are done by using vregs, because
397/// we need the vreg's live range in order to track the use of that
398/// location.
399#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
400#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
401pub struct VReg {
402    bits: u32,
403}
404
405impl VReg {
406    pub const MAX_BITS: usize = 21;
407    pub const MAX: usize = (1 << Self::MAX_BITS) - 1;
408
409    #[inline(always)]
410    pub const fn new(virt_reg: usize, class: RegClass) -> Self {
411        debug_assert!(virt_reg <= VReg::MAX);
412        VReg {
413            bits: ((virt_reg as u32) << 2) | (class as u8 as u32),
414        }
415    }
416
417    #[inline(always)]
418    pub const fn vreg(self) -> usize {
419        let vreg = (self.bits >> 2) as usize;
420        vreg
421    }
422
423    #[inline(always)]
424    pub const fn class(self) -> RegClass {
425        match self.bits & 0b11 {
426            0 => RegClass::Int,
427            1 => RegClass::Float,
428            2 => RegClass::Vector,
429            _ => unreachable!(),
430        }
431    }
432
433    #[inline(always)]
434    pub const fn invalid() -> Self {
435        VReg::new(Self::MAX, RegClass::Int)
436    }
437
438    #[inline(always)]
439    pub const fn bits(self) -> usize {
440        self.bits as usize
441    }
442}
443
444impl From<u32> for VReg {
445    fn from(value: u32) -> Self {
446        Self { bits: value }
447    }
448}
449
450impl core::fmt::Debug for VReg {
451    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
452        write!(
453            f,
454            "VReg(vreg = {}, class = {:?})",
455            self.vreg(),
456            self.class()
457        )
458    }
459}
460
461impl core::fmt::Display for VReg {
462    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
463        write!(f, "v{}", self.vreg())
464    }
465}
466
467/// A spillslot is a space in the stackframe used by the allocator to
468/// temporarily store a value.
469///
470/// The allocator is responsible for allocating indices in this space,
471/// and will specify how many spillslots have been used when the
472/// allocation is completed.
473#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
474#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
475pub struct SpillSlot {
476    bits: u32,
477}
478
479impl SpillSlot {
480    /// The maximum spillslot index.
481    pub const MAX: usize = (1 << 24) - 1;
482
483    /// Create a new SpillSlot.
484    #[inline(always)]
485    pub fn new(slot: usize) -> Self {
486        debug_assert!(slot <= Self::MAX);
487        SpillSlot { bits: slot as u32 }
488    }
489
490    /// Get the spillslot index for this spillslot.
491    #[inline(always)]
492    pub fn index(self) -> usize {
493        (self.bits & 0x00ffffff) as usize
494    }
495
496    /// Get the spillslot `offset` slots away.
497    #[inline(always)]
498    pub fn plus(self, offset: usize) -> Self {
499        SpillSlot::new(self.index() + offset)
500    }
501
502    /// Get the invalid spillslot, used for initializing data structures.
503    #[inline(always)]
504    pub fn invalid() -> Self {
505        SpillSlot { bits: 0xffff_ffff }
506    }
507
508    /// Is this the invalid spillslot?
509    #[inline(always)]
510    pub fn is_invalid(self) -> bool {
511        self == Self::invalid()
512    }
513
514    /// Is this a valid spillslot (not `SpillSlot::invalid()`)?
515    #[inline(always)]
516    pub fn is_valid(self) -> bool {
517        self != Self::invalid()
518    }
519}
520
521impl core::fmt::Display for SpillSlot {
522    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
523        write!(f, "stack{}", self.index())
524    }
525}
526
527/// An `OperandConstraint` specifies where a vreg's value must be
528/// placed at a particular reference to that vreg via an
529/// `Operand`. The constraint may be loose -- "any register of a given
530/// class", for example -- or very specific, such as "this particular
531/// physical register". The allocator's result will always satisfy all
532/// given constraints; however, if the input has a combination of
533/// constraints that are impossible to satisfy, then allocation may
534/// fail or the allocator may panic (providing impossible constraints
535/// is usually a programming error in the client, rather than a
536/// function of bad input).
537#[derive(Clone, Copy, Debug, PartialEq, Eq)]
538#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
539pub enum OperandConstraint {
540    /// Any location is fine (register or stack slot).
541    Any,
542    /// Operand must be in a register. Register is read-only for Uses.
543    Reg,
544    /// Operand must be on the stack.
545    Stack,
546    /// Operand must be in a fixed register.
547    FixedReg(PReg),
548    /// On defs only: reuse a use's register.
549    Reuse(usize),
550}
551
552impl core::fmt::Display for OperandConstraint {
553    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
554        match self {
555            Self::Any => write!(f, "any"),
556            Self::Reg => write!(f, "reg"),
557            Self::Stack => write!(f, "stack"),
558            Self::FixedReg(preg) => write!(f, "fixed({})", preg),
559            Self::Reuse(idx) => write!(f, "reuse({})", idx),
560        }
561    }
562}
563
564/// The "kind" of the operand: whether it reads a vreg (Use) or writes
565/// a vreg (Def).
566#[derive(Clone, Copy, Debug, PartialEq, Eq)]
567#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
568pub enum OperandKind {
569    Def = 0,
570    Use = 1,
571}
572
573/// The "position" of the operand: where it has its read/write
574/// effects. These are positions "in" the instruction, and "early" and
575/// "late" are relative to the instruction's main effect or
576/// computation. In other words, the allocator assumes that the
577/// instruction (i) performs all reads and writes of "early" operands,
578/// (ii) does its work, and (iii) performs all reads and writes of its
579/// "late" operands.
580///
581/// A "write" (def) at "early" or a "read" (use) at "late" may be
582/// slightly nonsensical, given the above, if the read is necessary
583/// for the computation or the write is a result of it. A way to think
584/// of it is that the value (even if a result of execution) *could*
585/// have been read or written at the given location without causing
586/// any register-usage conflicts. In other words, these write-early or
587/// use-late operands ensure that the particular allocations are valid
588/// for longer than usual and that a register is not reused between
589/// the use (normally complete at "Early") and the def (normally
590/// starting at "Late"). See `Operand` for more.
591#[derive(Clone, Copy, Debug, PartialEq, Eq)]
592#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
593pub enum OperandPos {
594    Early = 0,
595    Late = 1,
596}
597
598/// An `Operand` encodes everything about a mention of a register in
599/// an instruction: virtual register number, and any constraint that
600/// applies to the register at this program point.
601///
602/// An Operand may be a use or def (this corresponds to `LUse` and
603/// `LAllocation` in Ion).
604///
605/// Generally, regalloc2 considers operands to have their effects at
606/// one of two points that exist in an instruction: "Early" or
607/// "Late". All operands at a given program-point are assigned
608/// non-conflicting locations based on their constraints. Each operand
609/// has a "kind", one of use/def/mod, corresponding to
610/// read/write/read-write, respectively.
611///
612/// Usually, an instruction's inputs will be "early uses" and outputs
613/// will be "late defs", though there are valid use-cases for other
614/// combinations too. For example, a single "instruction" seen by the
615/// regalloc that lowers into multiple machine instructions and reads
616/// some of its inputs after it starts to write outputs must either
617/// make those input(s) "late uses" or those output(s) "early defs" so
618/// that the conflict (overlap) is properly accounted for. See
619/// comments on the constructors below for more.
620#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
621#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
622pub struct Operand {
623    /// Bit-pack into 32 bits.
624    ///
625    /// constraint:7 kind:1 pos:1 class:2 vreg:21
626    ///
627    /// where `constraint` is an `OperandConstraint`, `kind` is an
628    /// `OperandKind`, `pos` is an `OperandPos`, `class` is a
629    /// `RegClass`, and `vreg` is a vreg index.
630    ///
631    /// The constraints are encoded as follows:
632    /// - 1xxxxxx => FixedReg(preg)
633    /// - 01xxxxx => Reuse(index)
634    /// - 0000000 => Any
635    /// - 0000001 => Reg
636    /// - 0000010 => Stack
637    /// - _ => Unused for now
638    bits: u32,
639}
640
641impl Operand {
642    /// Construct a new operand.
643    #[inline(always)]
644    pub fn new(
645        vreg: VReg,
646        constraint: OperandConstraint,
647        kind: OperandKind,
648        pos: OperandPos,
649    ) -> Self {
650        let constraint_field = match constraint {
651            OperandConstraint::Any => 0,
652            OperandConstraint::Reg => 1,
653            OperandConstraint::Stack => 2,
654            OperandConstraint::FixedReg(preg) => {
655                debug_assert_eq!(preg.class(), vreg.class());
656                0b1000000 | preg.hw_enc() as u32
657            }
658            OperandConstraint::Reuse(which) => {
659                debug_assert!(which <= 0b11111);
660                0b0100000 | which as u32
661            }
662        };
663        let class_field = vreg.class() as u8 as u32;
664        let pos_field = pos as u8 as u32;
665        let kind_field = kind as u8 as u32;
666        Operand {
667            bits: vreg.vreg() as u32
668                | (class_field << 21)
669                | (pos_field << 23)
670                | (kind_field << 24)
671                | (constraint_field << 25),
672        }
673    }
674
675    /// Create an `Operand` that designates a use of a VReg that must
676    /// be in a register, and that is used at the "before" point,
677    /// i.e., can be overwritten by a result.
678    #[inline(always)]
679    pub fn reg_use(vreg: VReg) -> Self {
680        Operand::new(
681            vreg,
682            OperandConstraint::Reg,
683            OperandKind::Use,
684            OperandPos::Early,
685        )
686    }
687
688    /// Create an `Operand` that designates a use of a VReg that must
689    /// be in a register, and that is used up until the "after" point,
690    /// i.e., must not conflict with any results.
691    #[inline(always)]
692    pub fn reg_use_at_end(vreg: VReg) -> Self {
693        Operand::new(
694            vreg,
695            OperandConstraint::Reg,
696            OperandKind::Use,
697            OperandPos::Late,
698        )
699    }
700
701    /// Create an `Operand` that designates a definition of a VReg
702    /// that must be in a register, and that occurs at the "after"
703    /// point, i.e. may reuse a register that carried a use into this
704    /// instruction.
705    #[inline(always)]
706    pub fn reg_def(vreg: VReg) -> Self {
707        Operand::new(
708            vreg,
709            OperandConstraint::Reg,
710            OperandKind::Def,
711            OperandPos::Late,
712        )
713    }
714
715    /// Create an `Operand` that designates a definition of a VReg
716    /// that must be in a register, and that occurs early at the
717    /// "before" point, i.e., must not conflict with any input to the
718    /// instruction.
719    ///
720    /// Note that the register allocator will ensure that such an
721    /// early-def operand is live throughout the instruction, i.e., also
722    /// at the after-point. Hence it will also avoid conflicts with all
723    /// outputs to the instruction. As such, early defs are appropriate
724    /// for use as "temporary registers" that an instruction can use
725    /// throughout its execution separately from the inputs and outputs.
726    #[inline(always)]
727    pub fn reg_def_at_start(vreg: VReg) -> Self {
728        Operand::new(
729            vreg,
730            OperandConstraint::Reg,
731            OperandKind::Def,
732            OperandPos::Early,
733        )
734    }
735
736    /// Create an `Operand` that designates a def (and use) of a
737    /// temporary *within* the instruction. This register is assumed
738    /// to be written by the instruction, and will not conflict with
739    /// any input or output, but should not be used after the
740    /// instruction completes.
741    ///
742    /// Note that within a single instruction, the dedicated scratch
743    /// register (as specified in the `MachineEnv`) is also always
744    /// available for use. The register allocator may use the register
745    /// *between* instructions in order to implement certain sequences
746    /// of moves, but will never hold a value live in the scratch
747    /// register across an instruction.
748    #[inline(always)]
749    pub fn reg_temp(vreg: VReg) -> Self {
750        // For now a temp is equivalent to a def-at-start operand,
751        // which gives the desired semantics but does not enforce the
752        // "not reused later" constraint.
753        Operand::new(
754            vreg,
755            OperandConstraint::Reg,
756            OperandKind::Def,
757            OperandPos::Early,
758        )
759    }
760
761    /// Create an `Operand` that designates a def of a vreg that must
762    /// reuse the register assigned to an input to the
763    /// instruction. The input is identified by `idx` (is the `idx`th
764    /// `Operand` for the instruction) and must be constraint to a
765    /// register, i.e., be the result of `Operand::reg_use(vreg)`.
766    #[inline(always)]
767    pub fn reg_reuse_def(vreg: VReg, idx: usize) -> Self {
768        Operand::new(
769            vreg,
770            OperandConstraint::Reuse(idx),
771            OperandKind::Def,
772            OperandPos::Late,
773        )
774    }
775
776    /// Create an `Operand` that designates a use of a vreg and
777    /// ensures that it is placed in the given, fixed PReg at the
778    /// use. It is guaranteed that the `Allocation` resulting for this
779    /// operand will be `preg`.
780    #[inline(always)]
781    pub fn reg_fixed_use(vreg: VReg, preg: PReg) -> Self {
782        Operand::new(
783            vreg,
784            OperandConstraint::FixedReg(preg),
785            OperandKind::Use,
786            OperandPos::Early,
787        )
788    }
789
790    /// Create an `Operand` that designates a def of a vreg and
791    /// ensures that it is placed in the given, fixed PReg at the
792    /// def. It is guaranteed that the `Allocation` resulting for this
793    /// operand will be `preg`.
794    #[inline(always)]
795    pub fn reg_fixed_def(vreg: VReg, preg: PReg) -> Self {
796        Operand::new(
797            vreg,
798            OperandConstraint::FixedReg(preg),
799            OperandKind::Def,
800            OperandPos::Late,
801        )
802    }
803
804    /// Same as `reg_fixed_use` but at `OperandPos::Late`.
805    #[inline(always)]
806    pub fn reg_fixed_use_at_end(vreg: VReg, preg: PReg) -> Self {
807        Operand::new(
808            vreg,
809            OperandConstraint::FixedReg(preg),
810            OperandKind::Use,
811            OperandPos::Late,
812        )
813    }
814
815    /// Same as `reg_fixed_def` but at `OperandPos::Early`.
816    #[inline(always)]
817    pub fn reg_fixed_def_at_start(vreg: VReg, preg: PReg) -> Self {
818        Operand::new(
819            vreg,
820            OperandConstraint::FixedReg(preg),
821            OperandKind::Def,
822            OperandPos::Early,
823        )
824    }
825
826    /// Create an `Operand` that designates a use of a vreg and places
827    /// no constraints on its location (i.e., it can be allocated into
828    /// either a register or on the stack).
829    #[inline(always)]
830    pub fn any_use(vreg: VReg) -> Self {
831        Operand::new(
832            vreg,
833            OperandConstraint::Any,
834            OperandKind::Use,
835            OperandPos::Early,
836        )
837    }
838
839    /// Create an `Operand` that designates a def of a vreg and places
840    /// no constraints on its location (i.e., it can be allocated into
841    /// either a register or on the stack).
842    #[inline(always)]
843    pub fn any_def(vreg: VReg) -> Self {
844        Operand::new(
845            vreg,
846            OperandConstraint::Any,
847            OperandKind::Def,
848            OperandPos::Late,
849        )
850    }
851
852    /// Create an `Operand` that always results in an assignment to the
853    /// given fixed `preg`, *without* tracking liveranges in that
854    /// `preg`. Must only be used for non-allocatable registers.
855    #[inline(always)]
856    pub fn fixed_nonallocatable(preg: PReg) -> Self {
857        Operand::new(
858            VReg::new(VReg::MAX, preg.class()),
859            OperandConstraint::FixedReg(preg),
860            OperandKind::Use,
861            OperandPos::Early,
862        )
863    }
864
865    /// Get the virtual register designated by an operand. Every
866    /// operand must name some virtual register, even if it constrains
867    /// the operand to a fixed physical register as well; the vregs
868    /// are used to track dataflow.
869    #[inline(always)]
870    pub fn vreg(self) -> VReg {
871        let vreg_idx = ((self.bits as usize) & VReg::MAX) as usize;
872        VReg::new(vreg_idx, self.class())
873    }
874
875    /// Get the register class used by this operand.
876    #[inline(always)]
877    pub fn class(self) -> RegClass {
878        let class_field = (self.bits >> 21) & 3;
879        match class_field {
880            0 => RegClass::Int,
881            1 => RegClass::Float,
882            2 => RegClass::Vector,
883            _ => unreachable!(),
884        }
885    }
886
887    /// Get the "kind" of this operand: a definition (write) or a use
888    /// (read).
889    #[inline(always)]
890    pub fn kind(self) -> OperandKind {
891        let kind_field = (self.bits >> 24) & 1;
892        match kind_field {
893            0 => OperandKind::Def,
894            1 => OperandKind::Use,
895            _ => unreachable!(),
896        }
897    }
898
899    /// Get the "position" of this operand, i.e., where its read
900    /// and/or write occurs: either before the instruction executes,
901    /// or after it does. Ordinarily, uses occur at "before" and defs
902    /// at "after", though there are cases where this is not true.
903    #[inline(always)]
904    pub fn pos(self) -> OperandPos {
905        let pos_field = (self.bits >> 23) & 1;
906        match pos_field {
907            0 => OperandPos::Early,
908            1 => OperandPos::Late,
909            _ => unreachable!(),
910        }
911    }
912
913    /// Get the "constraint" of this operand, i.e., what requirements
914    /// its allocation must fulfill.
915    #[inline(always)]
916    pub fn constraint(self) -> OperandConstraint {
917        let constraint_field = ((self.bits >> 25) as usize) & 0b1111111;
918        if constraint_field & 0b1000000 != 0 {
919            OperandConstraint::FixedReg(PReg::new(constraint_field & 0b0111111, self.class()))
920        } else if constraint_field & 0b0100000 != 0 {
921            OperandConstraint::Reuse(constraint_field & 0b0011111)
922        } else {
923            match constraint_field {
924                0 => OperandConstraint::Any,
925                1 => OperandConstraint::Reg,
926                2 => OperandConstraint::Stack,
927                _ => unreachable!(),
928            }
929        }
930    }
931
932    /// If this operand is for a fixed non-allocatable register (see
933    /// [`Operand::fixed_nonallocatable`]), then returns the physical register that it will
934    /// be assigned to.
935    #[inline(always)]
936    pub fn as_fixed_nonallocatable(self) -> Option<PReg> {
937        match self.constraint() {
938            OperandConstraint::FixedReg(preg) if self.vreg().vreg() == VReg::MAX => Some(preg),
939            _ => None,
940        }
941    }
942
943    /// Get the raw 32-bit encoding of this operand's fields.
944    #[inline(always)]
945    pub fn bits(self) -> u32 {
946        self.bits
947    }
948
949    /// Construct an `Operand` from the raw 32-bit encoding returned
950    /// from `bits()`.
951    #[inline(always)]
952    pub fn from_bits(bits: u32) -> Self {
953        debug_assert!(bits >> 29 <= 4);
954        Operand { bits }
955    }
956}
957
958impl core::fmt::Debug for Operand {
959    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
960        core::fmt::Display::fmt(self, f)
961    }
962}
963
964impl core::fmt::Display for Operand {
965    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
966        if let Some(preg) = self.as_fixed_nonallocatable() {
967            return write!(f, "Fixed: {preg}");
968        }
969        match (self.kind(), self.pos()) {
970            (OperandKind::Def, OperandPos::Late) | (OperandKind::Use, OperandPos::Early) => {
971                write!(f, "{:?}", self.kind())?;
972            }
973            _ => {
974                write!(f, "{:?}@{:?}", self.kind(), self.pos())?;
975            }
976        }
977        write!(
978            f,
979            ": {}{} {}",
980            self.vreg(),
981            match self.class() {
982                RegClass::Int => "i",
983                RegClass::Float => "f",
984                RegClass::Vector => "v",
985            },
986            self.constraint()
987        )
988    }
989}
990
991/// An Allocation represents the end result of regalloc for an
992/// Operand.
993#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
994#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
995pub struct Allocation {
996    /// Bit-pack in 32 bits.
997    ///
998    /// kind:3 unused:1 index:28
999    bits: u32,
1000}
1001
1002impl core::fmt::Debug for Allocation {
1003    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1004        core::fmt::Display::fmt(self, f)
1005    }
1006}
1007
1008impl core::fmt::Display for Allocation {
1009    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1010        match self.kind() {
1011            AllocationKind::None => write!(f, "none"),
1012            AllocationKind::Reg => write!(f, "{}", self.as_reg().unwrap()),
1013            AllocationKind::Stack => write!(f, "{}", self.as_stack().unwrap()),
1014        }
1015    }
1016}
1017
1018impl Allocation {
1019    /// Construct a new Allocation.
1020    #[inline(always)]
1021    pub(crate) fn new(kind: AllocationKind, index: usize) -> Self {
1022        debug_assert!(index < (1 << 28));
1023        Self {
1024            bits: ((kind as u8 as u32) << 29) | (index as u32),
1025        }
1026    }
1027
1028    /// Get the "none" allocation, which is distinct from the other
1029    /// possibilities and is used to initialize data structures.
1030    #[inline(always)]
1031    pub fn none() -> Allocation {
1032        Allocation::new(AllocationKind::None, 0)
1033    }
1034
1035    /// Create an allocation into a register.
1036    #[inline(always)]
1037    pub fn reg(preg: PReg) -> Allocation {
1038        Allocation::new(AllocationKind::Reg, preg.index())
1039    }
1040
1041    /// Create an allocation into a spillslot.
1042    #[inline(always)]
1043    pub fn stack(slot: SpillSlot) -> Allocation {
1044        Allocation::new(AllocationKind::Stack, slot.bits as usize)
1045    }
1046
1047    /// Get the allocation's "kind": none, register, or stack (spillslot).
1048    #[inline(always)]
1049    pub fn kind(self) -> AllocationKind {
1050        match (self.bits >> 29) & 7 {
1051            0 => AllocationKind::None,
1052            1 => AllocationKind::Reg,
1053            2 => AllocationKind::Stack,
1054            _ => unreachable!(),
1055        }
1056    }
1057
1058    /// Is the allocation "none"?
1059    #[inline(always)]
1060    pub fn is_none(self) -> bool {
1061        self.kind() == AllocationKind::None
1062    }
1063
1064    /// Is the allocation not "none"?
1065    #[inline(always)]
1066    pub fn is_some(self) -> bool {
1067        self.kind() != AllocationKind::None
1068    }
1069
1070    /// Is the allocation a register?
1071    #[inline(always)]
1072    pub fn is_reg(self) -> bool {
1073        self.kind() == AllocationKind::Reg
1074    }
1075
1076    /// Is the allocation on the stack (a spillslot)?
1077    #[inline(always)]
1078    pub fn is_stack(self) -> bool {
1079        self.kind() == AllocationKind::Stack
1080    }
1081
1082    /// Get the index of the spillslot or register. If register, this
1083    /// is an index that can be used by `PReg::from_index()`.
1084    #[inline(always)]
1085    pub fn index(self) -> usize {
1086        (self.bits & ((1 << 28) - 1)) as usize
1087    }
1088
1089    /// Get the allocation as a physical register, if any.
1090    #[inline(always)]
1091    pub fn as_reg(self) -> Option<PReg> {
1092        if self.kind() == AllocationKind::Reg {
1093            Some(PReg::from_index(self.index()))
1094        } else {
1095            None
1096        }
1097    }
1098
1099    /// Get the allocation as a spillslot, if any.
1100    #[inline(always)]
1101    pub fn as_stack(self) -> Option<SpillSlot> {
1102        if self.kind() == AllocationKind::Stack {
1103            Some(SpillSlot {
1104                bits: self.index() as u32,
1105            })
1106        } else {
1107            None
1108        }
1109    }
1110
1111    /// Get the raw bits for the packed encoding of this allocation.
1112    #[inline(always)]
1113    pub fn bits(self) -> u32 {
1114        self.bits
1115    }
1116
1117    /// Construct an allocation from its packed encoding.
1118    #[inline(always)]
1119    pub fn from_bits(bits: u32) -> Self {
1120        debug_assert!(bits >> 29 >= 5);
1121        Self { bits }
1122    }
1123}
1124
1125/// An allocation is one of two "kinds" (or "none"): register or
1126/// spillslot/stack.
1127#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
1128#[repr(u8)]
1129#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1130pub enum AllocationKind {
1131    None = 0,
1132    Reg = 1,
1133    Stack = 2,
1134}
1135
1136/// A trait defined by the regalloc client to provide access to its
1137/// machine-instruction / CFG representation.
1138///
1139/// (This trait's design is inspired by, and derives heavily from, the
1140/// trait of the same name in regalloc.rs.)
1141///
1142/// The ids used in [`Block`] and [`VReg`] must start their numbering
1143/// at zero and be sequential.
1144pub trait Function {
1145    // -------------
1146    // CFG traversal
1147    // -------------
1148
1149    /// How many instructions are there?
1150    fn num_insts(&self) -> usize;
1151
1152    /// How many blocks are there?
1153    fn num_blocks(&self) -> usize;
1154
1155    /// Get the index of the entry block.
1156    fn entry_block(&self) -> Block;
1157
1158    /// Provide the range of instruction indices contained in each block.
1159    fn block_insns(&self, block: Block) -> InstRange;
1160
1161    /// Get CFG successors for a given block.
1162    fn block_succs(&self, block: Block) -> &[Block];
1163
1164    /// Get the CFG predecessors for a given block.
1165    fn block_preds(&self, block: Block) -> &[Block];
1166
1167    /// Get the block parameters for a given block.
1168    fn block_params(&self, block: Block) -> &[VReg];
1169
1170    /// Determine whether an instruction is a return instruction.
1171    fn is_ret(&self, insn: Inst) -> bool;
1172
1173    /// Determine whether an instruction is the end-of-block
1174    /// branch.
1175    fn is_branch(&self, insn: Inst) -> bool;
1176
1177    /// If `insn` is a branch at the end of `block`, returns the
1178    /// outgoing blockparam arguments for the given successor. The
1179    /// number of arguments must match the number incoming blockparams
1180    /// for each respective successor block.
1181    fn branch_blockparams(&self, block: Block, insn: Inst, succ_idx: usize) -> &[VReg];
1182
1183    // --------------------------
1184    // Instruction register slots
1185    // --------------------------
1186
1187    /// Get the Operands for an instruction.
1188    fn inst_operands(&self, insn: Inst) -> &[Operand];
1189
1190    /// Get the clobbers for an instruction; these are the registers
1191    /// that, after the instruction has executed, hold values that are
1192    /// arbitrary, separately from the usual outputs to the
1193    /// instruction. It is invalid to read a register that has been
1194    /// clobbered; the register allocator is free to assume that
1195    /// clobbered registers are filled with garbage and available for
1196    /// reuse. It will avoid storing any value in a clobbered register
1197    /// that must be live across the instruction.
1198    ///
1199    /// Another way of seeing this is that a clobber is equivalent to
1200    /// a "late def" of a fresh vreg that is not used anywhere else
1201    /// in the program, with a fixed-register constraint that places
1202    /// it in a given PReg chosen by the client prior to regalloc.
1203    ///
1204    /// Every register written by an instruction must either
1205    /// correspond to (be assigned to) an Operand of kind `Def`, or
1206    /// else must be a "clobber".
1207    ///
1208    /// This can be used to, for example, describe ABI-specified
1209    /// registers that are not preserved by a call instruction, or
1210    /// fixed physical registers written by an instruction but not
1211    /// used as a vreg output, or fixed physical registers used as
1212    /// temps within an instruction out of necessity.
1213    ///
1214    /// Note that clobbers and defs and late-uses must not collide: it
1215    /// is illegal to name the same physical register both as a clobber
1216    /// and in a fixed-register constraint on a def or late use.
1217    /// Internally, clobbers are modeled as defs (of throwaway vregs) at
1218    /// the instruction's late-point constrained to the named register.
1219    fn inst_clobbers(&self, insn: Inst) -> PRegSet;
1220
1221    /// Get the number of `VReg` in use in this function.
1222    fn num_vregs(&self) -> usize;
1223
1224    /// Get the VRegs for which we should generate value-location
1225    /// metadata for debugging purposes. This can be used to generate
1226    /// e.g. DWARF with valid prgram-point ranges for each value
1227    /// expression in a way that is more efficient than a post-hoc
1228    /// analysis of the allocator's output.
1229    ///
1230    /// Each tuple is (vreg, inclusive_start, exclusive_end,
1231    /// label). In the `Output` there will be (label, inclusive_start,
1232    /// exclusive_end, alloc)` tuples. The ranges may not exactly
1233    /// match -- specifically, the returned metadata may cover only a
1234    /// subset of the requested ranges -- if the value is not live for
1235    /// the entire requested ranges.
1236    ///
1237    /// The instruction indices imply a program point just *before*
1238    /// the instruction.
1239    ///
1240    /// Precondition: we require this slice to be sorted by vreg.
1241    fn debug_value_labels(&self) -> &[(VReg, Inst, Inst, u32)] {
1242        &[]
1243    }
1244
1245    // --------------
1246    // Spills/reloads
1247    // --------------
1248
1249    /// How many logical spill slots does the given regclass require?  E.g., on
1250    /// a 64-bit machine, spill slots may nominally be 64-bit words, but a
1251    /// 128-bit vector value will require two slots.  The regalloc will always
1252    /// align on this size.
1253    ///
1254    /// (This trait method's design and doc text derives from
1255    /// regalloc.rs' trait of the same name.)
1256    fn spillslot_size(&self, regclass: RegClass) -> usize;
1257
1258    /// When providing a spillslot number for a multi-slot spillslot,
1259    /// do we provide the first or the last? This is usually related
1260    /// to which direction the stack grows and different clients may
1261    /// have different preferences.
1262    fn multi_spillslot_named_by_last_slot(&self) -> bool {
1263        false
1264    }
1265
1266    // -----------
1267    // Misc config
1268    // -----------
1269
1270    /// Allow a single instruction to define a vreg multiple times. If
1271    /// allowed, the semantics are as if the definition occurs only
1272    /// once, and all defs will get the same alloc. This flexibility is
1273    /// meant to allow the embedder to more easily aggregate operands
1274    /// together in macro/pseudoinstructions, or e.g. add additional
1275    /// clobbered vregs without taking care to deduplicate. This may be
1276    /// particularly useful when referring to physical registers via
1277    /// pinned vregs. It is optional functionality because a strict mode
1278    /// (at most one def per vreg) is also useful for finding bugs in
1279    /// other applications.
1280    fn allow_multiple_vreg_defs(&self) -> bool {
1281        false
1282    }
1283}
1284
1285/// A position before or after an instruction at which we can make an
1286/// edit.
1287///
1288/// Note that this differs from `OperandPos` in that the former
1289/// describes specifically a constraint on an operand, while this
1290/// describes a program point. `OperandPos` could grow more options in
1291/// the future, for example if we decide that an "early write" or
1292/// "late read" phase makes sense, while `InstPosition` will always
1293/// describe these two insertion points.
1294#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
1295#[repr(u8)]
1296#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1297pub enum InstPosition {
1298    Before = 0,
1299    After = 1,
1300}
1301
1302/// A program point: a single point before or after a given instruction.
1303#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
1304#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1305pub struct ProgPoint {
1306    bits: u32,
1307}
1308
1309impl core::fmt::Debug for ProgPoint {
1310    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1311        write!(
1312            f,
1313            "progpoint{}{}",
1314            self.inst().index(),
1315            match self.pos() {
1316                InstPosition::Before => "-pre",
1317                InstPosition::After => "-post",
1318            }
1319        )
1320    }
1321}
1322
1323impl ProgPoint {
1324    /// Create a new ProgPoint before or after the given instruction.
1325    #[inline(always)]
1326    pub fn new(inst: Inst, pos: InstPosition) -> Self {
1327        let bits = ((inst.0 as u32) << 1) | (pos as u8 as u32);
1328        Self { bits }
1329    }
1330
1331    /// Create a new ProgPoint before the given instruction.
1332    #[inline(always)]
1333    pub fn before(inst: Inst) -> Self {
1334        Self::new(inst, InstPosition::Before)
1335    }
1336
1337    /// Create a new ProgPoint after the given instruction.
1338    #[inline(always)]
1339    pub fn after(inst: Inst) -> Self {
1340        Self::new(inst, InstPosition::After)
1341    }
1342
1343    /// Get the instruction that this ProgPoint is before or after.
1344    #[inline(always)]
1345    pub fn inst(self) -> Inst {
1346        // Cast to i32 to do an arithmetic right-shift, which will
1347        // preserve an `Inst::invalid()` (which is -1, or all-ones).
1348        Inst::new(((self.bits as i32) >> 1) as usize)
1349    }
1350
1351    /// Get the "position" (Before or After) relative to the
1352    /// instruction.
1353    #[inline(always)]
1354    pub fn pos(self) -> InstPosition {
1355        match self.bits & 1 {
1356            0 => InstPosition::Before,
1357            1 => InstPosition::After,
1358            _ => unreachable!(),
1359        }
1360    }
1361
1362    /// Get the "next" program point: for After, this is the Before of
1363    /// the next instruction, while for Before, this is After of the
1364    /// same instruction.
1365    #[inline(always)]
1366    pub fn next(self) -> ProgPoint {
1367        Self {
1368            bits: self.bits + 1,
1369        }
1370    }
1371
1372    /// Get the "previous" program point, the inverse of `.next()`
1373    /// above.
1374    #[inline(always)]
1375    pub fn prev(self) -> ProgPoint {
1376        Self {
1377            bits: self.bits - 1,
1378        }
1379    }
1380
1381    /// Convert to a raw encoding in 32 bits.
1382    #[inline(always)]
1383    pub fn to_index(self) -> u32 {
1384        self.bits
1385    }
1386
1387    /// Construct from the raw 32-bit encoding.
1388    #[inline(always)]
1389    pub fn from_index(index: u32) -> Self {
1390        Self { bits: index }
1391    }
1392
1393    #[inline(always)]
1394    pub fn invalid() -> Self {
1395        Self::before(Inst::new(usize::MAX))
1396    }
1397}
1398
1399/// An instruction to insert into the program to perform some data movement.
1400#[derive(Clone, Debug)]
1401#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1402pub enum Edit {
1403    /// Move one allocation to another. Each allocation may be a
1404    /// register or a stack slot (spillslot). However, stack-to-stack
1405    /// moves will never be generated.
1406    ///
1407    /// `Move` edits will be generated even if src and dst allocation
1408    /// are the same if the vreg changes; this allows proper metadata
1409    /// tracking even when moves are elided.
1410    Move { from: Allocation, to: Allocation },
1411}
1412
1413/// Wrapper around either an original instruction or an inserted edit.
1414#[derive(Clone, Debug)]
1415pub enum InstOrEdit<'a> {
1416    Inst(Inst),
1417    Edit(&'a Edit),
1418}
1419
1420/// Iterator over the instructions and edits in a block.
1421pub struct OutputIter<'a> {
1422    /// List of edits starting at the first for the current block.
1423    edits: &'a [(ProgPoint, Edit)],
1424
1425    /// Remaining instructions in the current block.
1426    inst_range: InstRange,
1427}
1428
1429impl<'a> Iterator for OutputIter<'a> {
1430    type Item = InstOrEdit<'a>;
1431
1432    fn next(&mut self) -> Option<InstOrEdit<'a>> {
1433        // There can't be any edits after the last instruction in a block, so
1434        // we don't need to worry about that case.
1435        if self.inst_range.len() == 0 {
1436            return None;
1437        }
1438
1439        // Return any edits that happen before the next instruction first.
1440        let next_inst = self.inst_range.first();
1441        if let Some((edit, remaining_edits)) = self.edits.split_first() {
1442            if edit.0 <= ProgPoint::before(next_inst) {
1443                self.edits = remaining_edits;
1444                return Some(InstOrEdit::Edit(&edit.1));
1445            }
1446        }
1447
1448        self.inst_range = self.inst_range.rest();
1449        Some(InstOrEdit::Inst(next_inst))
1450    }
1451}
1452
1453/// A machine environment tells the register allocator which registers
1454/// are available to allocate and what register may be used as a
1455/// scratch register for each class, and some other miscellaneous info
1456/// as well.
1457#[derive(Clone, Debug)]
1458#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1459pub struct MachineEnv {
1460    /// Preferred physical registers for each class. These are the
1461    /// registers that will be allocated first, if free.
1462    ///
1463    /// If an explicit scratch register is provided in `scratch_by_class` then
1464    /// it must not appear in this list.
1465    pub preferred_regs_by_class: [Vec<PReg>; 3],
1466
1467    /// Non-preferred physical registers for each class. These are the
1468    /// registers that will be allocated if a preferred register is
1469    /// not available; using one of these is considered suboptimal,
1470    /// but still better than spilling.
1471    ///
1472    /// If an explicit scratch register is provided in `scratch_by_class` then
1473    /// it must not appear in this list.
1474    pub non_preferred_regs_by_class: [Vec<PReg>; 3],
1475
1476    /// Optional dedicated scratch register per class. This is needed to perform
1477    /// moves between registers when cyclic move patterns occur. The
1478    /// register should not be placed in either the preferred or
1479    /// non-preferred list (i.e., it is not otherwise allocatable).
1480    ///
1481    /// Note that the register allocator will freely use this register
1482    /// between instructions, but *within* the machine code generated
1483    /// by a single (regalloc-level) instruction, the client is free
1484    /// to use the scratch register. E.g., if one "instruction" causes
1485    /// the emission of two machine-code instructions, this lowering
1486    /// can use the scratch register between them.
1487    ///
1488    /// If a scratch register is not provided then the register allocator will
1489    /// automatically allocate one as needed, spilling a value to the stack if
1490    /// necessary.
1491    pub scratch_by_class: [Option<PReg>; 3],
1492
1493    /// Some `PReg`s can be designated as locations on the stack rather than
1494    /// actual registers. These can be used to tell the register allocator about
1495    /// pre-defined stack slots used for function arguments and return values.
1496    ///
1497    /// `PReg`s in this list cannot be used as an allocatable or scratch
1498    /// register.
1499    pub fixed_stack_slots: Vec<PReg>,
1500}
1501
1502/// The output of the register allocator.
1503#[derive(Clone, Debug, Default)]
1504#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1505pub struct Output {
1506    /// How many spillslots are needed in the frame?
1507    pub num_spillslots: usize,
1508
1509    /// Edits (insertions or removals). Guaranteed to be sorted by
1510    /// program point.
1511    pub edits: Vec<(ProgPoint, Edit)>,
1512
1513    /// Allocations for each operand. Mapping from instruction to
1514    /// allocations provided by `inst_alloc_offsets` below.
1515    pub allocs: Vec<Allocation>,
1516
1517    /// Allocation offset in `allocs` for each instruction.
1518    pub inst_alloc_offsets: Vec<u32>,
1519
1520    /// Debug info: a labeled value (as applied to vregs by
1521    /// `Function::debug_value_labels()` on the input side) is located
1522    /// in the given allocation from the first program point
1523    /// (inclusive) to the second (exclusive). Guaranteed to be sorted
1524    /// by label and program point, and the ranges are guaranteed to
1525    /// be disjoint.
1526    pub debug_locations: Vec<(u32, ProgPoint, ProgPoint, Allocation)>,
1527
1528    /// Internal stats from the allocator.
1529    pub stats: ion::Stats,
1530}
1531
1532impl Output {
1533    /// Get the allocations assigned to a given instruction.
1534    pub fn inst_allocs(&self, inst: Inst) -> &[Allocation] {
1535        let start = self.inst_alloc_offsets[inst.index()] as usize;
1536        let end = if inst.index() + 1 == self.inst_alloc_offsets.len() {
1537            self.allocs.len()
1538        } else {
1539            self.inst_alloc_offsets[inst.index() + 1] as usize
1540        };
1541        &self.allocs[start..end]
1542    }
1543
1544    /// Returns an iterator over the instructions and edits in a block, in
1545    /// order.
1546    pub fn block_insts_and_edits(&self, func: &impl Function, block: Block) -> OutputIter<'_> {
1547        let inst_range = func.block_insns(block);
1548
1549        let edit_idx = self
1550            .edits
1551            .binary_search_by(|&(pos, _)| {
1552                // This predicate effectively searches for a point *just* before
1553                // the first ProgPoint. This never returns Ordering::Equal, but
1554                // binary_search_by returns the index of where it would have
1555                // been inserted in Err.
1556                if pos < ProgPoint::before(inst_range.first()) {
1557                    core::cmp::Ordering::Less
1558                } else {
1559                    core::cmp::Ordering::Greater
1560                }
1561            })
1562            .unwrap_err();
1563
1564        let edits = &self.edits[edit_idx..];
1565        OutputIter { inst_range, edits }
1566    }
1567}
1568
1569/// An error that prevents allocation.
1570#[derive(Clone, Debug)]
1571#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1572pub enum RegAllocError {
1573    /// Critical edge is not split between given blocks.
1574    CritEdge(Block, Block),
1575    /// Invalid SSA for given vreg at given inst: multiple defs or
1576    /// illegal use. `inst` may be `Inst::invalid()` if this concerns
1577    /// a block param.
1578    SSA(VReg, Inst),
1579    /// Invalid basic block: does not end in branch/ret, or contains a
1580    /// branch/ret in the middle, or the VReg ids do not start at zero
1581    /// or aren't numbered sequentially.
1582    BB(Block),
1583    /// Invalid branch: operand count does not match sum of block
1584    /// params of successor blocks, or the block ids do not start at
1585    /// zero or aren't numbered sequentially.
1586    Branch(Inst),
1587    /// A VReg is live-in on entry; this is not allowed.
1588    EntryLivein,
1589    /// A branch has non-blockparam arg(s) and at least one of the
1590    /// successor blocks has more than one predecessor, forcing
1591    /// edge-moves before this branch. This is disallowed because it
1592    /// places a use after the edge moves occur; insert an edge block
1593    /// to avoid the situation.
1594    DisallowedBranchArg(Inst),
1595    /// Too many pinned VRegs + Reg-constrained Operands are live at
1596    /// once, making allocation impossible.
1597    TooManyLiveRegs,
1598    /// Too many operands on a single instruction (beyond limit of
1599    /// 2^16 - 1).
1600    TooManyOperands,
1601}
1602
1603impl core::fmt::Display for RegAllocError {
1604    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1605        write!(f, "{:?}", self)
1606    }
1607}
1608
1609#[cfg(feature = "std")]
1610impl std::error::Error for RegAllocError {}
1611
1612/// Run the allocator.
1613pub fn run<F: Function>(
1614    func: &F,
1615    env: &MachineEnv,
1616    options: &RegallocOptions,
1617) -> Result<Output, RegAllocError> {
1618    match options.algorithm {
1619        Algorithm::Ion => {
1620            let mut ctx = Ctx::default();
1621            run_with_ctx(func, env, options, &mut ctx)?;
1622            Ok(ctx.output)
1623        }
1624        Algorithm::Fastalloc => {
1625            fastalloc::run(func, env, options.verbose_log, options.validate_ssa)
1626        }
1627    }
1628}
1629
1630/// Run the allocator with reusable context.
1631///
1632/// Return value points to `ctx.output` that can be alternatively `std::mem::take`n.
1633pub fn run_with_ctx<'a, F: Function>(
1634    func: &F,
1635    env: &MachineEnv,
1636    options: &RegallocOptions,
1637    ctx: &'a mut Ctx,
1638) -> Result<&'a Output, RegAllocError> {
1639    match options.algorithm {
1640        Algorithm::Ion => ion::run(func, env, ctx, options.verbose_log, options.validate_ssa)?,
1641        Algorithm::Fastalloc => {
1642            ctx.output = fastalloc::run(func, env, options.verbose_log, options.validate_ssa)?
1643        }
1644    }
1645    Ok(&ctx.output)
1646}
1647
1648#[derive(Clone, Copy, Debug, Default)]
1649pub enum Algorithm {
1650    #[default]
1651    Ion,
1652    Fastalloc,
1653}
1654
1655/// Options for allocation.
1656#[derive(Clone, Copy, Debug, Default)]
1657pub struct RegallocOptions {
1658    /// Add extra verbosity to debug logs.
1659    pub verbose_log: bool,
1660
1661    /// Run the SSA validator before allocating registers.
1662    pub validate_ssa: bool,
1663
1664    /// The register allocation algorithm to be used.
1665    pub algorithm: Algorithm,
1666}
1667
1668pub(crate) trait VecExt<T> {
1669    /// Fills `self` with `value` up to `len` and return the mutable slice to the values.
1670    fn repopulate(&mut self, len: usize, value: T) -> &mut [T]
1671    where
1672        T: Clone;
1673    /// Clears the `self` and returns a mutable reference to it.
1674    fn cleared(&mut self) -> &mut Self;
1675    /// Makes sure `self` is empty and has at least `cap` capacity.
1676    fn preallocate(&mut self, cap: usize) -> &mut Self;
1677}
1678
1679impl<T> VecExt<T> for Vec<T> {
1680    fn repopulate(&mut self, len: usize, value: T) -> &mut [T]
1681    where
1682        T: Clone,
1683    {
1684        self.clear();
1685        self.resize(len, value);
1686        self
1687    }
1688
1689    fn cleared(&mut self) -> &mut Self {
1690        self.clear();
1691        self
1692    }
1693
1694    fn preallocate(&mut self, cap: usize) -> &mut Self {
1695        self.clear();
1696        self.reserve(cap);
1697        self
1698    }
1699}
1700
1701#[derive(Debug, Clone, Default)]
1702pub(crate) struct Bump(Rc<bumpalo::Bump>);
1703
1704impl Bump {
1705    pub(crate) fn get_mut(&mut self) -> Option<&mut bumpalo::Bump> {
1706        Rc::get_mut(&mut self.0)
1707    }
1708}
1709
1710// Simply delegating because `Rc<bumpalo::Bump>` does not implement `Allocator`.
1711unsafe impl allocator_api2::alloc::Allocator for Bump {
1712    fn allocate(
1713        &self,
1714        layout: core::alloc::Layout,
1715    ) -> Result<core::ptr::NonNull<[u8]>, allocator_api2::alloc::AllocError> {
1716        self.0.deref().allocate(layout)
1717    }
1718
1719    unsafe fn deallocate(&self, ptr: core::ptr::NonNull<u8>, layout: core::alloc::Layout) {
1720        self.0.deref().deallocate(ptr, layout);
1721    }
1722
1723    fn allocate_zeroed(
1724        &self,
1725        layout: core::alloc::Layout,
1726    ) -> Result<core::ptr::NonNull<[u8]>, allocator_api2::alloc::AllocError> {
1727        self.0.deref().allocate_zeroed(layout)
1728    }
1729
1730    unsafe fn grow(
1731        &self,
1732        ptr: core::ptr::NonNull<u8>,
1733        old_layout: core::alloc::Layout,
1734        new_layout: core::alloc::Layout,
1735    ) -> Result<core::ptr::NonNull<[u8]>, allocator_api2::alloc::AllocError> {
1736        self.0.deref().grow(ptr, old_layout, new_layout)
1737    }
1738
1739    unsafe fn grow_zeroed(
1740        &self,
1741        ptr: core::ptr::NonNull<u8>,
1742        old_layout: core::alloc::Layout,
1743        new_layout: core::alloc::Layout,
1744    ) -> Result<core::ptr::NonNull<[u8]>, allocator_api2::alloc::AllocError> {
1745        self.0.deref().grow_zeroed(ptr, old_layout, new_layout)
1746    }
1747
1748    unsafe fn shrink(
1749        &self,
1750        ptr: core::ptr::NonNull<u8>,
1751        old_layout: core::alloc::Layout,
1752        new_layout: core::alloc::Layout,
1753    ) -> Result<core::ptr::NonNull<[u8]>, allocator_api2::alloc::AllocError> {
1754        self.0.deref().shrink(ptr, old_layout, new_layout)
1755    }
1756}