regalloc 0.0.31

Modular register allocation algorithms
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
//! Performs dataflow and liveness analysis, including live range construction.

use log::{debug, info, log_enabled, Level};
use smallvec::{smallvec, SmallVec};
use std::cmp::min;
use std::fmt;

use crate::analysis_control_flow::CFGInfo;
use crate::data_structures::{
    BlockIx, InstIx, InstPoint, MoveInfo, MoveInfoElem, Point, Queue, RangeFrag, RangeFragIx,
    RangeFragKind, RangeFragMetrics, RealRange, RealRangeIx, RealReg, RealRegUniverse, Reg,
    RegClass, RegSets, RegToRangesMaps, RegUsageCollector, RegVecBounds, RegVecs, RegVecsAndBounds,
    SortedRangeFragIxs, SortedRangeFrags, SpillCost, TypedIxVec, VirtualRange, VirtualRangeIx,
    VirtualReg,
};
use crate::sparse_set::SparseSet;
use crate::union_find::{ToFromU32, UnionFind};
use crate::Function;

//===========================================================================//
//                                                                           //
// DATA FLOW AND LIVENESS ANALYSIS                                           //
//                                                                           //
//===========================================================================//

//=============================================================================
// Data flow analysis: extraction and sanitization of reg-use information: low
// level interface

// === The meaning of "sanitization" ===
//
// The meaning of "sanitization" is as follows.  Incoming virtual-registerised
// code may mention a mixture of virtual and real registers.  Those real
// registers may include some which aren't available for the allocators to
// use.  Rather than scatter ad-hoc logic all over the analysis phase and the
// allocators, we simply remove all non-available real registers from the
// per-instruction use/def/mod sets.  The effect is that, after this point, we
// can operate on the assumption that any register we come across is either a
// virtual register or a real register available to the allocator.
//
// A real register is available to the allocator iff its index number is less
// than `RealRegUniverse.allocable`.
//
// Furthermore, it is not allowed that any incoming instruction mentions one
// of the per-class scratch registers listed in
// `RealRegUniverse.allocable_by_class[..].suggested_scratch` in either a use
// or mod role.  Sanitisation will also detect this case and return an error.
// Mentions of a scratch register in a def role are tolerated; however, since
// no instruction may use or modify a scratch register, all such writes are
// dead..
//
// In all of the above, "mentions" of a real register really means "uses,
// defines or modifications of said register".  It doesn't matter whether the
// instruction explicitly mentions the register or whether it is an implicit
// mention (eg, %cl in x86 shift-by-a-variable-amount instructions).  In other
// words, a "mention" is any use, def or mod as detected by the client's
// `get_regs` routine.

// === Filtering of register groups in `RegVec`s ===
//
// Filtering on a group is done by leaving the start point unchanged, sliding
// back retained registers to fill the holes from non-retained registers, and
// reducing the group length accordingly.  The effect is to effectively "leak"
// some registers in the group, but that's not a problem.
//
// Extraction of register usages for the whole function is done by
// `get_sanitized_reg_uses_for_func`.  For each instruction, their used,
// defined and modified register sets are acquired by calling the client's
// `get_regs` function.  Then each of those three sets are cleaned up as
// follows:
//
// (1) duplicates are removed (after which they really are sets)
//
// (2) any registers in the modified set are removed from the used and defined
//     sets.  This enforces the invariant that
//    `intersect(modified, union(used, defined))` is the empty set.  Live range
//    fragment computation (get_range_frags_for_block) depends on this property.
//
// (3) real registers unavailable to the allocator are removed, per the
//     abovementioned sanitization rules.

// ==== LOCAL FN ====
// Given a register group in `regs[start, +len)`, remove duplicates from the
// group.  The new group size is written to `*len`.
#[inline(never)]
fn remove_dups_from_group(regs: &mut Vec<Reg>, start: u32, len: &mut u8) {
    // First sort the group, to facilitate de-duplication.
    regs[start as usize..start as usize + *len as usize].sort_unstable();

    // Now make a compacting pass over the group.  'rd' = read point in the
    // group, 'wr' = write point in the group.
    let mut wr = start as usize;
    for rd in start as usize..start as usize + *len as usize {
        let reg = regs[rd];
        if rd == start as usize || regs[rd - 1] != reg {
            // It's not a duplicate.
            if wr != rd {
                regs[wr] = reg;
            }
            wr += 1;
        }
    }

    let new_len_usize = wr - start as usize;
    assert!(new_len_usize <= *len as usize);
    // This narrowing is safe because the old `len` fitted in 8 bits.
    *len = new_len_usize as u8;
}

// ==== LOCAL FN ====
// Remove from `group[group_start, +group_len)` any registers mentioned in
// `mods[mods_start, +mods_len)`, and update `*group_len` accordingly.
#[inline(never)]
fn remove_mods_from_group(
    group: &mut Vec<Reg>,
    group_start: u32,
    group_len: &mut u8,
    mods: &Vec<Reg>,
    mods_start: u32,
    mods_len: u8,
) {
    let mut wr = group_start as usize;
    for rd in group_start as usize..group_start as usize + *group_len as usize {
        let reg = group[rd];
        // Only retain `reg` if it is not mentioned in `mods[mods_start, +mods_len)`
        let mut retain = true;
        for i in mods_start as usize..mods_start as usize + mods_len as usize {
            if reg == mods[i] {
                retain = false;
                break;
            }
        }
        if retain {
            if wr != rd {
                group[wr] = reg;
            }
            wr += 1;
        }
    }
    let new_group_len_usize = wr - group_start as usize;
    assert!(new_group_len_usize <= *group_len as usize);
    // This narrowing is safe because the old `group_len` fitted in 8 bits.
    *group_len = new_group_len_usize as u8;
}

// ==== EXPORTED FN ====
// For instruction `inst`, add the register uses to the ends of `reg_vecs`,
// and write bounds information into `bounds`.  The register uses are raw
// (unsanitized) but they are guaranteed to be duplicate-free and also to have
// no `mod` mentions in the `use` or `def` groups.  That is, cleanups (1) and
// (2) above have been done.
#[inline(never)]
pub fn add_raw_reg_vecs_for_insn<F: Function>(
    inst: &F::Inst,
    reg_vecs: &mut RegVecs,
    bounds: &mut RegVecBounds,
) {
    bounds.uses_start = reg_vecs.uses.len() as u32;
    bounds.defs_start = reg_vecs.defs.len() as u32;
    bounds.mods_start = reg_vecs.mods.len() as u32;

    let mut collector = RegUsageCollector::new(reg_vecs);
    F::get_regs(inst, &mut collector);

    let uses_len = collector.reg_vecs.uses.len() as u32 - bounds.uses_start;
    let defs_len = collector.reg_vecs.defs.len() as u32 - bounds.defs_start;
    let mods_len = collector.reg_vecs.mods.len() as u32 - bounds.mods_start;

    // This assertion is important -- the cleanup logic also depends on it.
    assert!((uses_len | defs_len | mods_len) < 256);
    bounds.uses_len = uses_len as u8;
    bounds.defs_len = defs_len as u8;
    bounds.mods_len = mods_len as u8;

    // First, de-dup the three new groups.
    if bounds.uses_len > 0 {
        remove_dups_from_group(
            &mut collector.reg_vecs.uses,
            bounds.uses_start,
            &mut bounds.uses_len,
        );
    }
    if bounds.defs_len > 0 {
        remove_dups_from_group(
            &mut collector.reg_vecs.defs,
            bounds.defs_start,
            &mut bounds.defs_len,
        );
    }
    if bounds.mods_len > 0 {
        remove_dups_from_group(
            &mut collector.reg_vecs.mods,
            bounds.mods_start,
            &mut bounds.mods_len,
        );
    }

    // And finally, remove modified registers from the set of used and defined
    // registers, so we don't have to make the client do so.
    if bounds.mods_len > 0 {
        if bounds.uses_len > 0 {
            remove_mods_from_group(
                &mut collector.reg_vecs.uses,
                bounds.uses_start,
                &mut bounds.uses_len,
                &collector.reg_vecs.mods,
                bounds.mods_start,
                bounds.mods_len,
            );
        }
        if bounds.defs_len > 0 {
            remove_mods_from_group(
                &mut collector.reg_vecs.defs,
                bounds.defs_start,
                &mut bounds.defs_len,
                &collector.reg_vecs.mods,
                bounds.mods_start,
                bounds.mods_len,
            );
        }
    }
}

// ==== LOCAL FN ====
// This is the fundamental keep-or-don't-keep? predicate for sanitization.  To
// do this exactly right we also need to know whether the register is
// mentioned in a def role (as opposed to a use or mod role).  Note that this
// function can fail, and the error must be propagated.
#[inline(never)]
fn sanitize_should_retain_reg(
    reg_universe: &RealRegUniverse,
    reg: Reg,
    reg_is_defd: bool,
) -> Result<bool, RealReg> {
    // Retain all virtual regs.
    if reg.is_virtual() {
        return Ok(true);
    }

    // So it's a RealReg.
    let rreg_ix = reg.get_index();

    // Check that this RealReg is mentioned in the universe.
    if rreg_ix >= reg_universe.regs.len() {
        // This is a serious error which should be investigated.  It means the
        // client gave us an instruction which mentions a RealReg which isn't
        // listed in the RealRegUniverse it gave us.  That's not allowed.
        return Err(reg.as_real_reg().unwrap());
    }

    // Discard all real regs that aren't available to the allocator.
    if rreg_ix >= reg_universe.allocable {
        return Ok(false);
    }

    // It isn't allowed for the client to give us an instruction which reads or
    // modifies one of the scratch registers.  It is however allowed to write a
    // scratch register.
    for reg_info in &reg_universe.allocable_by_class {
        if let Some(reg_info) = reg_info {
            if let Some(scratch_idx) = &reg_info.suggested_scratch {
                let scratch_reg = reg_universe.regs[*scratch_idx].0;
                if reg.to_real_reg() == scratch_reg {
                    if !reg_is_defd {
                        // This is an error (on the part of the client).
                        return Err(reg.as_real_reg().unwrap());
                    }
                }
            }
        }
    }

    // `reg` is mentioned in the universe, is available to the allocator, and if
    // it is one of the scratch regs, it is only written, not read or modified.
    Ok(true)
}
// END helper fn

// ==== LOCAL FN ====
// Given a register group in `regs[start, +len)`, sanitize the group.  To do
// this exactly right we also need to know whether the registers in the group
// are mentioned in def roles (as opposed to use or mod roles).  Sanitisation
// can fail, in which case we must propagate the error.  If it is successful,
// the new group size is written to `*len`.
#[inline(never)]
fn sanitize_group(
    reg_universe: &RealRegUniverse,
    regs: &mut Vec<Reg>,
    start: u32,
    len: &mut u8,
    is_def_group: bool,
) -> Result<(), RealReg> {
    // Make a single compacting pass over the group.  'rd' = read point in the
    // group, 'wr' = write point in the group.
    let mut wr = start as usize;
    for rd in start as usize..start as usize + *len as usize {
        let reg = regs[rd];
        // This call can fail:
        if sanitize_should_retain_reg(reg_universe, reg, is_def_group)? {
            if wr != rd {
                regs[wr] = reg;
            }
            wr += 1;
        }
    }

    let new_len_usize = wr - start as usize;
    assert!(new_len_usize <= *len as usize);
    // This narrowing is safe because the old `len` fitted in 8 bits.
    *len = new_len_usize as u8;
    Ok(())
}

// ==== LOCAL FN ====
// For instruction `inst`, add the fully cleaned-up register uses to the ends
// of `reg_vecs`, and write bounds information into `bounds`.  Cleanups (1)
// (2) and (3) mentioned above have been done.  Note, this can fail, and the
// error must be propagated.
#[inline(never)]
fn add_san_reg_vecs_for_insn<F: Function>(
    inst: &F::Inst,
    reg_universe: &RealRegUniverse,
    reg_vecs: &mut RegVecs,
    bounds: &mut RegVecBounds,
) -> Result<(), RealReg> {
    // Get the raw reg usages.  These will be dup-free and mod-cleaned-up
    // (meaning cleanups (1) and (3) have been done).
    add_raw_reg_vecs_for_insn::<F>(inst, reg_vecs, bounds);

    // Finally and sanitize them.  Any errors from sanitization are propagated.
    if bounds.uses_len > 0 {
        sanitize_group(
            &reg_universe,
            &mut reg_vecs.uses,
            bounds.uses_start,
            &mut bounds.uses_len,
            /*is_def_group=*/ false,
        )?;
    }
    if bounds.defs_len > 0 {
        sanitize_group(
            &reg_universe,
            &mut reg_vecs.defs,
            bounds.defs_start,
            &mut bounds.defs_len,
            /*is_def_group=*/ true,
        )?;
    }
    if bounds.mods_len > 0 {
        sanitize_group(
            &reg_universe,
            &mut reg_vecs.mods,
            bounds.mods_start,
            &mut bounds.mods_len,
            /*is_def_group=*/ false,
        )?;
    }

    Ok(())
}

// ==== MAIN FN ====
#[inline(never)]
pub fn get_sanitized_reg_uses_for_func<F: Function>(
    func: &F,
    reg_universe: &RealRegUniverse,
) -> Result<RegVecsAndBounds, RealReg> {
    // These are modified by the per-insn loop.
    let mut reg_vecs = RegVecs::new(false);
    let mut bounds_vec = TypedIxVec::<InstIx, RegVecBounds>::new();
    bounds_vec.reserve(func.insns().len());

    // For each insn, add their register uses to the ends of the 3 vectors in
    // `reg_vecs`, and create an admin entry to describe the 3 new groups.  Any
    // errors from sanitization are propagated.
    for insn in func.insns() {
        let mut bounds = RegVecBounds::new();
        add_san_reg_vecs_for_insn::<F>(insn, &reg_universe, &mut reg_vecs, &mut bounds)?;

        bounds_vec.push(bounds);
    }

    assert!(!reg_vecs.is_sanitized());
    reg_vecs.set_sanitized(true);

    if log_enabled!(Level::Debug) {
        let show_reg = |r: Reg| {
            if r.is_real() {
                reg_universe.regs[r.get_index()].1.clone()
            } else {
                format!("{:?}", r).to_string()
            }
        };
        let show_regs = |r_vec: &[Reg]| {
            let mut s = "".to_string();
            for r in r_vec {
                s = s + &show_reg(*r) + &" ".to_string();
            }
            s
        };

        for i in 0..bounds_vec.len() {
            let iix = InstIx::new(i);
            let s_use = show_regs(
                &reg_vecs.uses[bounds_vec[iix].uses_start as usize
                    ..bounds_vec[iix].uses_start as usize + bounds_vec[iix].uses_len as usize],
            );
            let s_mod = show_regs(
                &reg_vecs.mods[bounds_vec[iix].mods_start as usize
                    ..bounds_vec[iix].mods_start as usize + bounds_vec[iix].mods_len as usize],
            );
            let s_def = show_regs(
                &reg_vecs.defs[bounds_vec[iix].defs_start as usize
                    ..bounds_vec[iix].defs_start as usize + bounds_vec[iix].defs_len as usize],
            );
            debug!(
                "{:?}  SAN_RU: use {{ {}}} mod {{ {}}} def {{ {}}}",
                iix, s_use, s_mod, s_def
            );
        }
    }

    Ok(RegVecsAndBounds::new(reg_vecs, bounds_vec))
}
// END main function

//=============================================================================
// Data flow analysis: extraction and sanitization of reg-use information:
// convenience interface

// ==== EXPORTED ====
#[inline(always)]
pub fn does_inst_use_def_or_mod_reg(
    rvb: &RegVecsAndBounds,
    iix: InstIx,
    reg: Reg,
) -> (/*uses*/ bool, /*defs*/ bool, /*mods*/ bool) {
    let bounds = &rvb.bounds[iix];
    let vecs = &rvb.vecs;
    let mut uses = false;
    let mut defs = false;
    let mut mods = false;
    // Since each group of registers is in order and duplicate-free (as a result
    // of `remove_dups_from_group`), we could in theory binary-search here.  But
    // it'd almost certainly be a net loss; the group sizes are very small,
    // often zero.
    for i in bounds.uses_start as usize..bounds.uses_start as usize + bounds.uses_len as usize {
        if vecs.uses[i] == reg {
            uses = true;
            break;
        }
    }
    for i in bounds.defs_start as usize..bounds.defs_start as usize + bounds.defs_len as usize {
        if vecs.defs[i] == reg {
            defs = true;
            break;
        }
    }
    for i in bounds.mods_start as usize..bounds.mods_start as usize + bounds.mods_len as usize {
        if vecs.mods[i] == reg {
            mods = true;
            break;
        }
    }
    (uses, defs, mods)
}

// ==== EXPORTED ====
// This is slow, really slow.  Don't use it on critical paths.  This applies
// `get_regs` to `inst`, performs cleanups (1) and (2), but does not sanitize
// the results.  The results are wrapped up as Sets for convenience.
// JRS 2020Apr09: remove this if no further use for it appears soon.
#[allow(dead_code)]
#[inline(never)]
pub fn get_raw_reg_sets_for_insn<F: Function>(inst: &F::Inst) -> RegSets {
    let mut reg_vecs = RegVecs::new(false);
    let mut bounds = RegVecBounds::new();

    add_raw_reg_vecs_for_insn::<F>(inst, &mut reg_vecs, &mut bounds);

    // Make up a fake RegVecsAndBounds for just this insn, so we can hand it to
    // RegVecsAndBounds::get_reg_sets_for_iix.
    let mut single_insn_bounds = TypedIxVec::<InstIx, RegVecBounds>::new();
    single_insn_bounds.push(bounds);

    assert!(!reg_vecs.is_sanitized());
    let single_insn_rvb = RegVecsAndBounds::new(reg_vecs, single_insn_bounds);
    single_insn_rvb.get_reg_sets_for_iix(InstIx::new(0))
}

// ==== EXPORTED ====
// This is even slower.  This applies `get_regs` to `inst`, performs cleanups
// (1) (2) and (3).  The results are wrapped up as Sets for convenience.  Note
// this function can fail.
#[inline(never)]
pub fn get_san_reg_sets_for_insn<F: Function>(
    inst: &F::Inst,
    reg_universe: &RealRegUniverse,
) -> Result<RegSets, RealReg> {
    let mut reg_vecs = RegVecs::new(false);
    let mut bounds = RegVecBounds::new();

    add_san_reg_vecs_for_insn::<F>(inst, &reg_universe, &mut reg_vecs, &mut bounds)?;

    // Make up a fake RegVecsAndBounds for just this insn, so we can hand it to
    // RegVecsAndBounds::get_reg_sets_for_iix.
    let mut single_insn_bounds = TypedIxVec::<InstIx, RegVecBounds>::new();
    single_insn_bounds.push(bounds);

    assert!(!reg_vecs.is_sanitized());
    reg_vecs.set_sanitized(true);
    let single_insn_rvb = RegVecsAndBounds::new(reg_vecs, single_insn_bounds);
    Ok(single_insn_rvb.get_reg_sets_for_iix(InstIx::new(0)))
}

//=============================================================================
// Data flow analysis: calculation of per-block register def and use sets

// Returned TypedIxVecs contain one element per block
#[inline(never)]
pub fn calc_def_and_use<F: Function>(
    func: &F,
    rvb: &RegVecsAndBounds,
    univ: &RealRegUniverse,
) -> (
    TypedIxVec<BlockIx, SparseSet<Reg>>,
    TypedIxVec<BlockIx, SparseSet<Reg>>,
) {
    info!("    calc_def_and_use: begin");
    assert!(rvb.is_sanitized());
    let mut def_sets = TypedIxVec::new();
    let mut use_sets = TypedIxVec::new();
    for b in func.blocks() {
        let mut def = SparseSet::empty();
        let mut uce = SparseSet::empty();
        for iix in func.block_insns(b) {
            let bounds_for_iix = &rvb.bounds[iix];
            // Add to `uce`, any registers for which the first event in this block
            // is a read.  Dealing with the "first event" constraint is a bit
            // tricky.  In the next two loops, `u` and `m` is used (either read or
            // modified) by the instruction.  Whether or not we should consider it
            // live-in for the block depends on whether it was been written earlier
            // in the block.  We can determine that by checking whether it is
            // already in the def set for the block.
            // FIXME: isn't thus just:
            //   uce union= (regs_u minus def)   followed by
            //   uce union= (regs_m minus def)
            for i in bounds_for_iix.uses_start as usize
                ..bounds_for_iix.uses_start as usize + bounds_for_iix.uses_len as usize
            {
                let u = rvb.vecs.uses[i];
                if !def.contains(u) {
                    uce.insert(u);
                }
            }
            for i in bounds_for_iix.mods_start as usize
                ..bounds_for_iix.mods_start as usize + bounds_for_iix.mods_len as usize
            {
                let m = rvb.vecs.mods[i];
                if !def.contains(m) {
                    uce.insert(m);
                }
            }

            // Now add to `def`, all registers written by the instruction.
            // This is simpler.
            // FIXME: isn't this just: def union= (regs_d union regs_m) ?
            for i in bounds_for_iix.defs_start as usize
                ..bounds_for_iix.defs_start as usize + bounds_for_iix.defs_len as usize
            {
                let d = rvb.vecs.defs[i];
                def.insert(d);
            }
            for i in bounds_for_iix.mods_start as usize
                ..bounds_for_iix.mods_start as usize + bounds_for_iix.mods_len as usize
            {
                let m = rvb.vecs.mods[i];
                def.insert(m);
            }
        }
        def_sets.push(def);
        use_sets.push(uce);
    }

    assert!(def_sets.len() == use_sets.len());

    if log_enabled!(Level::Debug) {
        let mut n = 0;
        debug!("");
        for (def_set, use_set) in def_sets.iter().zip(use_sets.iter()) {
            let mut first = true;
            let mut defs_str = "".to_string();
            for def in def_set.to_vec() {
                if !first {
                    defs_str = defs_str + &" ".to_string();
                }
                first = false;
                defs_str = defs_str + &def.show_with_rru(univ);
            }
            first = true;
            let mut uses_str = "".to_string();
            for uce in use_set.to_vec() {
                if !first {
                    uses_str = uses_str + &" ".to_string();
                }
                first = false;
                uses_str = uses_str + &uce.show_with_rru(univ);
            }
            debug!(
                "{:<3?}   def {{{}}}  use {{{}}}",
                BlockIx::new(n),
                defs_str,
                uses_str
            );
            n += 1;
        }
    }

    info!("    calc_def_and_use: end");
    (def_sets, use_sets)
}

//=============================================================================
// Data flow analysis: computation of per-block register live-in and live-out
// sets

// Returned vectors contain one element per block
#[inline(never)]
pub fn calc_livein_and_liveout<F: Function>(
    func: &F,
    def_sets_per_block: &TypedIxVec<BlockIx, SparseSet<Reg>>,
    use_sets_per_block: &TypedIxVec<BlockIx, SparseSet<Reg>>,
    cfg_info: &CFGInfo,
    univ: &RealRegUniverse,
) -> (
    TypedIxVec<BlockIx, SparseSet<Reg>>,
    TypedIxVec<BlockIx, SparseSet<Reg>>,
) {
    info!("    calc_livein_and_liveout: begin");
    let num_blocks = func.blocks().len() as u32;
    let empty = SparseSet::<Reg>::empty();

    let mut num_evals = 0;
    let mut liveouts = TypedIxVec::<BlockIx, SparseSet<Reg>>::new();
    liveouts.resize(num_blocks, empty.clone());

    // Initialise the work queue so as to do a reverse preorder traversal
    // through the graph, after which blocks are re-evaluated on demand.
    let mut work_queue = Queue::<BlockIx>::new();
    for i in 0..num_blocks {
        // block_ix travels in "reverse preorder"
        let block_ix = cfg_info.pre_ord[(num_blocks - 1 - i) as usize];
        work_queue.push_back(block_ix);
    }

    // in_queue is an optimisation -- this routine works fine without it.  in_queue is
    // used to avoid inserting duplicate work items in work_queue.  This avoids some
    // number of duplicate re-evaluations and gets us to a fixed point faster.
    // Very roughly, it reduces the number of evaluations per block from around
    // 3 to around 2.
    let mut in_queue = Vec::<bool>::new();
    in_queue.resize(num_blocks as usize, true);

    while let Some(block_ix) = work_queue.pop_front() {
        let i = block_ix.get() as usize;
        assert!(in_queue[i]);
        in_queue[i] = false;

        // Compute a new value for liveouts[block_ix]
        let mut set = SparseSet::<Reg>::empty();
        for block_j_ix in cfg_info.succ_map[block_ix].iter() {
            let mut live_in_j = liveouts[*block_j_ix].clone();
            live_in_j.remove(&def_sets_per_block[*block_j_ix]);
            live_in_j.union(&use_sets_per_block[*block_j_ix]);
            set.union(&live_in_j);
        }
        num_evals += 1;

        if !set.equals(&liveouts[block_ix]) {
            liveouts[block_ix] = set;
            // Add `block_ix`'s predecessors to the work queue, since their
            // liveout values might be affected.
            for block_j_ix in cfg_info.pred_map[block_ix].iter() {
                let j = block_j_ix.get() as usize;
                if !in_queue[j] {
                    work_queue.push_back(*block_j_ix);
                    in_queue[j] = true;
                }
            }
        }
    }

    // The liveout values are done, but we need to compute the liveins
    // too.
    let mut liveins = TypedIxVec::<BlockIx, SparseSet<Reg>>::new();
    liveins.resize(num_blocks, empty.clone());
    for block_ix in BlockIx::new(0).dotdot(BlockIx::new(num_blocks)) {
        let mut live_in = liveouts[block_ix].clone();
        live_in.remove(&def_sets_per_block[block_ix]);
        live_in.union(&use_sets_per_block[block_ix]);
        liveins[block_ix] = live_in;
    }

    if false {
        let mut sum_card_live_in = 0;
        let mut sum_card_live_out = 0;
        for bix in BlockIx::new(0).dotdot(BlockIx::new(num_blocks)) {
            sum_card_live_in += liveins[bix].card();
            sum_card_live_out += liveouts[bix].card();
        }
        println!(
            "QQQQ calc_LI/LO: num_evals {}, tot LI {}, tot LO {}",
            num_evals, sum_card_live_in, sum_card_live_out
        );
    }

    let ratio: f32 = (num_evals as f32) / ((if num_blocks == 0 { 1 } else { num_blocks }) as f32);
    info!(
        "    calc_livein_and_liveout:   {} blocks, {} evals ({:<.2} per block)",
        num_blocks, num_evals, ratio
    );

    if log_enabled!(Level::Debug) {
        let mut n = 0;
        debug!("");
        for (livein, liveout) in liveins.iter().zip(liveouts.iter()) {
            let mut first = true;
            let mut li_str = "".to_string();
            for li in livein.to_vec() {
                if !first {
                    li_str = li_str + &" ".to_string();
                }
                first = false;
                li_str = li_str + &li.show_with_rru(univ);
            }
            first = true;
            let mut lo_str = "".to_string();
            for lo in liveout.to_vec() {
                if !first {
                    lo_str = lo_str + &" ".to_string();
                }
                first = false;
                lo_str = lo_str + &lo.show_with_rru(univ);
            }
            debug!(
                "{:<3?}   livein {{{}}}  liveout {{{}}}",
                BlockIx::new(n),
                li_str,
                lo_str
            );
            n += 1;
        }
    }

    info!("    calc_livein_and_liveout: end");
    (liveins, liveouts)
}

//=============================================================================
// Computation of RangeFrags (Live Range Fragments), aggregated per register.
// This does not produce complete live ranges.  That is done later, by
// `merge_range_frags` below, using the information computed in this section
// by `get_range_frags`.

// This is surprisingly complex, in part because of the need to correctly
// handle (1) live-in and live-out Regs, (2) dead writes, and (3) instructions
// that modify registers rather than merely reading or writing them.

/// A ProtoRangeFrag carries information about a [write .. read] range, within a Block, which
/// we will later turn into a fully-fledged RangeFrag.  It basically records the first and
/// last-known InstPoints for appearances of a Reg.
///
/// ProtoRangeFrag also keeps count of the number of appearances of the Reg to which it
/// pertains, using `uses`.  The counts get rolled into the resulting RangeFrags, and later are
/// used to calculate spill costs.
///
/// The running state of this function is a map from Reg to ProtoRangeFrag.  Only Regs that
/// actually appear in the Block (or are live-in to it) are mapped.  This has the advantage of
/// economy, since most Regs will not appear in (or be live-in to) most Blocks.
#[derive(Clone)]
struct ProtoRangeFrag {
    /// The InstPoint in this Block at which the associated Reg most recently became live (when
    /// moving forwards though the Block).  If this value is the first InstPoint for the Block
    /// (the U point for the Block's lowest InstIx), that indicates the associated Reg is
    /// live-in to the Block.
    first: InstPoint,

    /// This is the InstPoint which is the end point (most recently observed read, in general)
    /// for the current RangeFrag under construction.  In general we will move `last` forwards
    /// as we discover reads of the associated Reg.  If this is the last InstPoint for the
    /// Block (the D point for the Block's highest InstInx), that indicates that the associated
    /// reg is live-out from the Block.
    last: InstPoint,

    /// Number of mentions of the associated Reg in this ProtoRangeFrag.
    num_mentions: u16,
}

impl fmt::Debug for ProtoRangeFrag {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "{:?}x {:?} - {:?}",
            self.num_mentions, self.first, self.last
        )
    }
}

// `fn get_range_frags` and `fn get_range_frags_for_block` below work with two vectors,
// `out_map` and `state`, that are indexed by register.  This allows them to entirely avoid the
// use of hash-based `Map`s.  However, it does give a problem in that real and virtual registers
// occupy separate, zero-based index spaces.  To solve this, we map `Reg`s to a "unified index
// space" as follows:
//
// a `RealReg` is mapped to its `.get_index()` value
//
// a `VirtualReg` is mapped to its `.get_index()` value + the number of real registers
//
// To make this not too inconvenient, `fn reg_to_reg_ix` and `fn reg_ix_to_reg` convert `Reg`s
// to and from the unified index space.  This has the annoying side effect that reconstructing a
// `Reg` from an index space value requires having available both the register universe, and a
// table specifying the class for each virtual register.
//
// Really, we ought to rework the `Reg`/`RealReg`/`VirtualReg` abstractions, so as to (1) impose
// a single index space for both register kinds, and (2) so as to separate the concepts of the
// register index from the `Reg` itself.  This second point would have the additional benefit of
// making it feasible to represent sets of registers using bit sets.

#[inline(always)]
pub(crate) fn reg_to_reg_ix(num_real_regs: u32, r: Reg) -> u32 {
    if r.is_real() {
        r.get_index_u32()
    } else {
        num_real_regs + r.get_index_u32()
    }
}

#[inline(always)]
pub(crate) fn reg_ix_to_reg(
    reg_universe: &RealRegUniverse,
    vreg_classes: &Vec</*vreg index,*/ RegClass>,
    reg_ix: u32,
) -> Reg {
    let reg_ix = reg_ix as usize;
    let num_real_regs = reg_universe.regs.len();
    if reg_ix < num_real_regs {
        reg_universe.regs[reg_ix].0.to_reg()
    } else {
        let vreg_ix = reg_ix - num_real_regs;
        Reg::new_virtual(vreg_classes[vreg_ix], vreg_ix as u32)
    }
}

// HELPER FUNCTION
// Add to `out_map`, a binding from `reg` to the frags-and-metrics pair specified by `frag` and
// `frag_metrics`.  As a space-saving optimisation, make some attempt to avoid creating
// duplicate entries in `out_frags` and `out_frag_metrics`.
#[inline(always)]
fn emit_range_frag(
    out_map: &mut Vec</*rreg index, then vreg index, */ SmallVec<[RangeFragIx; 8]>>,
    out_frags: &mut TypedIxVec<RangeFragIx, RangeFrag>,
    out_frag_metrics: &mut TypedIxVec<RangeFragIx, RangeFragMetrics>,
    num_real_regs: u32,
    reg: Reg,
    frag: &RangeFrag,
    frag_metrics: &RangeFragMetrics,
) {
    debug_assert!(out_frags.len() == out_frag_metrics.len());

    // Allocate a new RangeFragIx for `frag`, except, make some minimal effort to avoid huge
    // numbers of duplicates by inspecting the previous two entries, and using them if
    // possible.
    let mut new_fix = None;

    let num_out_frags = out_frags.len();
    if num_out_frags >= 2 {
        let back_0 = RangeFragIx::new(num_out_frags - 1);
        let back_1 = RangeFragIx::new(num_out_frags - 2);
        if out_frags[back_0] == *frag && out_frag_metrics[back_0] == *frag_metrics {
            new_fix = Some(back_0);
        } else if out_frags[back_1] == *frag && out_frag_metrics[back_1] == *frag_metrics {
            new_fix = Some(back_1);
        }
    }

    let new_fix = match new_fix {
        Some(fix) => fix,
        None => {
            // We can't look back or there was no match; create a new one.
            out_frags.push(frag.clone());
            out_frag_metrics.push(frag_metrics.clone());
            RangeFragIx::new(out_frags.len() as u32 - 1)
        }
    };

    // And use the new RangeFragIx.
    out_map[reg_to_reg_ix(num_real_regs, reg) as usize].push(new_fix);
}

/// Calculate all the RangeFrags for `bix`.  Add them to `out_frags` and corresponding metrics
/// data to `out_frag_metrics`.  Add to `out_map`, the associated RangeFragIxs, segregated by
/// Reg.  `bix`, `livein`, `liveout` and `rvb` are expected to be valid in the context of the
/// Func `f` (duh!).
#[inline(never)]
fn get_range_frags_for_block<F: Function>(
    // Constants
    func: &F,
    rvb: &RegVecsAndBounds,
    reg_universe: &RealRegUniverse,
    vreg_classes: &Vec</*vreg index,*/ RegClass>,
    bix: BlockIx,
    livein: &SparseSet<Reg>,
    liveout: &SparseSet<Reg>,
    // Preallocated storage for use in this function.  They do not carry any useful information
    // in between calls here.
    visited: &mut Vec<u32>,
    state: &mut Vec</*rreg index, then vreg index, */ Option<ProtoRangeFrag>>,
    // These accumulate the results of RangeFrag/RangeFragMetrics across multiple calls here.
    out_map: &mut Vec</*rreg index, then vreg index, */ SmallVec<[RangeFragIx; 8]>>,
    out_frags: &mut TypedIxVec<RangeFragIx, RangeFrag>,
    out_frag_metrics: &mut TypedIxVec<RangeFragIx, RangeFragMetrics>,
) {
    #[inline(always)]
    fn plus1(n: u16) -> u16 {
        if n == 0xFFFFu16 {
            n
        } else {
            n + 1
        }
    }

    // Invariants for the preallocated storage:
    //
    // * `visited` is always irrelevant (and cleared) at the start
    //
    // * `state` always has size (# real regs + # virtual regs).  However, all its entries
    // should be `None` in between calls here.

    // We use `visited` to keep track of which `state` entries need processing at the end of
    // this function.  Since `state` is indexed by unified-reg-index, it follows that `visited`
    // is a vector of unified-reg-indices.  We add an entry to `visited` whenever we change a
    // `state` entry from `None` to `Some`.  This guarantees that we can find all the `Some`
    // `state` entries at the end of the function, change them back to `None`, and emit the
    // corresponding fragment.
    visited.clear();

    // Some handy constants.
    assert!(func.block_insns(bix).len() >= 1);
    let first_iix_in_block = func.block_insns(bix).first();
    let last_iix_in_block = func.block_insns(bix).last();
    let first_pt_in_block = InstPoint::new_use(first_iix_in_block);
    let last_pt_in_block = InstPoint::new_def(last_iix_in_block);
    let num_real_regs = reg_universe.regs.len() as u32;

    // First, set up `state` as if all of `livein` had been written just prior to the block.
    for r in livein.iter() {
        let r_state_ix = reg_to_reg_ix(num_real_regs, *r) as usize;
        debug_assert!(state[r_state_ix].is_none());
        state[r_state_ix] = Some(ProtoRangeFrag {
            num_mentions: 0,
            first: first_pt_in_block,
            last: first_pt_in_block,
        });
        visited.push(r_state_ix as u32);
    }

    // Now visit each instruction in turn, examining first the registers it reads, then those it
    // modifies, and finally those it writes.
    for iix in func.block_insns(bix) {
        let bounds_for_iix = &rvb.bounds[iix];

        // Examine reads.  This is pretty simple.  They simply extend an existing ProtoRangeFrag
        // to the U point of the reading insn.
        for i in
            bounds_for_iix.uses_start..bounds_for_iix.uses_start + bounds_for_iix.uses_len as u32
        {
            let r = rvb.vecs.uses[i as usize];
            let r_state_ix = reg_to_reg_ix(num_real_regs, r) as usize;
            match &mut state[r_state_ix] {
                // First event for `r` is a read, but it's not listed in `livein`, since otherwise
                // `state` would have an entry for it.
                None => panic!("get_range_frags_for_block: fail #1"),
                Some(ref mut pf) => {
                    // This the first or subsequent read after a write.  Note that the "write" can
                    // be either a real write, or due to the fact that `r` is listed in `livein`.
                    // We don't care here.
                    pf.num_mentions = plus1(pf.num_mentions);
                    let new_last = InstPoint::new_use(iix);
                    debug_assert!(pf.last <= new_last);
                    pf.last = new_last;
                }
            }
        }

        // Examine modifies.  These are handled almost identically to reads, except that they
        // extend an existing ProtoRangeFrag down to the D point of the modifying insn.
        for i in
            bounds_for_iix.mods_start..bounds_for_iix.mods_start + bounds_for_iix.mods_len as u32
        {
            let r = &rvb.vecs.mods[i as usize];
            let r_state_ix = reg_to_reg_ix(num_real_regs, *r) as usize;
            match &mut state[r_state_ix] {
                // First event for `r` is a read (really, since this insn modifies `r`), but it's
                // not listed in `livein`, since otherwise `state` would have an entry for it.
                None => panic!("get_range_frags_for_block: fail #2"),
                Some(ref mut pf) => {
                    // This the first or subsequent modify after a write.
                    pf.num_mentions = plus1(pf.num_mentions);
                    let new_last = InstPoint::new_def(iix);
                    debug_assert!(pf.last <= new_last);
                    pf.last = new_last;
                }
            }
        }

        // Examine writes (but not writes implied by modifies).  The general idea is that a
        // write causes us to terminate and emit the existing ProtoRangeFrag, if any, and start
        // a new frag.
        for i in
            bounds_for_iix.defs_start..bounds_for_iix.defs_start + bounds_for_iix.defs_len as u32
        {
            let r = &rvb.vecs.defs[i as usize];
            let r_state_ix = reg_to_reg_ix(num_real_regs, *r) as usize;
            match &mut state[r_state_ix] {
                // First mention of a Reg we've never heard of before.  Start a new
                // ProtoRangeFrag for it and keep going.
                None => {
                    let new_pt = InstPoint::new_def(iix);
                    let new_pf = ProtoRangeFrag {
                        num_mentions: 1,
                        first: new_pt,
                        last: new_pt,
                    };
                    state[r_state_ix] = Some(new_pf);
                    visited.push(r_state_ix as u32);
                }

                // There's already a ProtoRangeFrag for `r`.  This write will start a new one,
                // so emit the existing one and note this write.
                Some(ProtoRangeFrag {
                    ref mut num_mentions,
                    ref mut first,
                    ref mut last,
                }) => {
                    if first == last {
                        debug_assert!(*num_mentions == 1);
                    }

                    let (frag, frag_metrics) =
                        RangeFrag::new_with_metrics(func, bix, *first, *last, *num_mentions);
                    emit_range_frag(
                        out_map,
                        out_frags,
                        out_frag_metrics,
                        num_real_regs,
                        *r,
                        &frag,
                        &frag_metrics,
                    );
                    let new_pt = InstPoint::new_def(iix);
                    // Reuse the previous entry for this new definition of the same vreg.
                    *num_mentions = 1;
                    *first = new_pt;
                    *last = new_pt;
                }
            }
        }
    }

    // We are at the end of the block.  We still have to deal with live-out Regs.  We must also
    // deal with ProtoRangeFrags in `state` that are for registers not listed as live-out.

    // Deal with live-out Regs.  Treat each one as if it is read just after the block.
    for r in liveout.iter() {
        let r_state_ix = reg_to_reg_ix(num_real_regs, *r) as usize;
        let state_elem_p = &mut state[r_state_ix];
        match state_elem_p {
            // This can't happen.  `r` is in `liveout`, but this implies that it is neither
            // defined in the block nor present in `livein`.
            None => panic!("get_range_frags_for_block: fail #3"),
            Some(ref pf) => {
                // `r` is written (or modified), either literally or by virtue of being present
                // in `livein`, and may or may not subsequently be read -- we don't care,
                // because it must be read "after" the block.  Create a `LiveOut` or `Thru` frag
                // accordingly.
                let (frag, frag_metrics) = RangeFrag::new_with_metrics(
                    func,
                    bix,
                    pf.first,
                    last_pt_in_block,
                    pf.num_mentions,
                );
                emit_range_frag(
                    out_map,
                    out_frags,
                    out_frag_metrics,
                    num_real_regs,
                    *r,
                    &frag,
                    &frag_metrics,
                );
                // Remove the entry from `state` so that the following loop doesn't process it
                // again.
                *state_elem_p = None;
            }
        }
    }

    // Finally, round up any remaining ProtoRangeFrags left in `state`.  This is what `visited`
    // is used for.
    for r_state_ix in visited {
        let state_elem_p = &mut state[*r_state_ix as usize];
        match state_elem_p {
            None => {}
            Some(pf) => {
                if pf.first == pf.last {
                    debug_assert!(pf.num_mentions == 1);
                }
                let (frag, frag_metrics) =
                    RangeFrag::new_with_metrics(func, bix, pf.first, pf.last, pf.num_mentions);
                let r = reg_ix_to_reg(reg_universe, vreg_classes, *r_state_ix);
                emit_range_frag(
                    out_map,
                    out_frags,
                    out_frag_metrics,
                    num_real_regs,
                    r,
                    &frag,
                    &frag_metrics,
                );
                // Maintain invariant that all `state` entries are `None` in between calls to
                // this function.
                *state_elem_p = None;
            }
        }
    }
}

#[inline(never)]
pub fn get_range_frags<F: Function>(
    func: &F,
    rvb: &RegVecsAndBounds,
    reg_universe: &RealRegUniverse,
    livein_sets_per_block: &TypedIxVec<BlockIx, SparseSet<Reg>>,
    liveout_sets_per_block: &TypedIxVec<BlockIx, SparseSet<Reg>>,
) -> (
    Vec</*rreg index, then vreg index, */ SmallVec<[RangeFragIx; 8]>>,
    TypedIxVec<RangeFragIx, RangeFrag>,
    TypedIxVec<RangeFragIx, RangeFragMetrics>,
    Vec</*vreg index,*/ RegClass>,
) {
    info!("    get_range_frags: begin");
    assert!(livein_sets_per_block.len() == func.blocks().len() as u32);
    assert!(liveout_sets_per_block.len() == func.blocks().len() as u32);
    assert!(rvb.is_sanitized());

    // In order that we can work with unified-reg-indices (see comments above), we need to know
    // the `RegClass` for each virtual register.  That info is collected here.
    let mut vreg_classes = vec![RegClass::INVALID; func.get_num_vregs()];
    for r in rvb
        .vecs
        .uses
        .iter()
        .chain(rvb.vecs.defs.iter())
        .chain(rvb.vecs.mods.iter())
    {
        if r.is_real() {
            continue;
        }
        let r_ix = r.get_index();
        // rustc 1.43.0 appears to have problems avoiding duplicate bounds checks for
        // `vreg_classes[r_ix]`; hence give it a helping hand here.
        let vreg_classes_ptr = &mut vreg_classes[r_ix];
        if *vreg_classes_ptr == RegClass::INVALID {
            *vreg_classes_ptr = r.get_class();
        } else {
            assert_eq!(*vreg_classes_ptr, r.get_class());
        }
    }

    let num_real_regs = reg_universe.regs.len();
    let num_virtual_regs = vreg_classes.len();
    let num_regs = num_real_regs + num_virtual_regs;

    // A state variable that's reused across calls to `get_range_frags_for_block`.  When not in
    // a call to `get_range_frags_for_block`, all entries should be `None`.
    let mut state = Vec::</*rreg index, then vreg index, */ Option<ProtoRangeFrag>>::new();
    state.resize(num_regs, None);

    // Scratch storage needed by `get_range_frags_for_block`.  Doesn't carry any useful info in
    // between calls.  Start it off not-quite-empty since it will always get used at least a
    // bit.
    let mut visited = Vec::<u32>::with_capacity(32);

    // `RangeFrag`/`RangeFragMetrics` are collected across multiple calls to
    // `get_range_frag_for_blocks` in these three vectors.  In other words, they collect the
    // overall results for this function.
    let mut result_frags = TypedIxVec::<RangeFragIx, RangeFrag>::new();
    let mut result_frag_metrics = TypedIxVec::<RangeFragIx, RangeFragMetrics>::new();
    let mut result_map =
        Vec::</*rreg index, then vreg index, */ SmallVec<[RangeFragIx; 8]>>::default();
    result_map.resize(num_regs, smallvec![]);

    for bix in func.blocks() {
        get_range_frags_for_block(
            func,
            rvb,
            reg_universe,
            &vreg_classes,
            bix,
            &livein_sets_per_block[bix],
            &liveout_sets_per_block[bix],
            &mut visited,
            &mut state,
            &mut result_map,
            &mut result_frags,
            &mut result_frag_metrics,
        );
    }

    assert!(state.len() == num_regs);
    assert!(result_map.len() == num_regs);
    assert!(vreg_classes.len() == num_virtual_regs);
    // This is pretty cheap (once per fn) and any failure will be catastrophic since it means we
    // may have forgotten some live range fragments.  Hence `assert!` and not `debug_assert!`.
    for state_elem in &state {
        assert!(state_elem.is_none());
    }

    if log_enabled!(Level::Debug) {
        debug!("");
        let mut n = 0;
        for frag in result_frags.iter() {
            debug!("{:<3?}   {:?}", RangeFragIx::new(n), frag);
            n += 1;
        }

        debug!("");
        for (reg_ix, frag_ixs) in result_map.iter().enumerate() {
            if frag_ixs.len() == 0 {
                continue;
            }
            let reg = reg_ix_to_reg(reg_universe, &vreg_classes, reg_ix as u32);
            debug!(
                "frags for {}   {:?}",
                reg.show_with_rru(reg_universe),
                frag_ixs
            );
        }
    }

    info!("    get_range_frags: end");
    assert!(result_frags.len() == result_frag_metrics.len());
    (result_map, result_frags, result_frag_metrics, vreg_classes)
}

//=============================================================================
// Auxiliary tasks involved in creating a single VirtualRange from its
// constituent RangeFragIxs:
//
// * The RangeFragIxs we are given here are purely within single blocks.
//   Here, we "compress" them, that is, merge those pairs that flow from one
//   block into the the one that immediately follows it in the instruction
//   stream.  This does not imply anything about control flow; it is purely a
//   scheme for reducing the total number of fragments that need to be dealt
//   with during interference detection (later on).
//
// * Computation of metrics for the VirtualRange.  This is done by examining
//   metrics of the individual fragments, and must be done before they are
//   compressed.

// HELPER FUNCTION
// Does `frag1` describe some range of instructions that is followed
// immediately by `frag2` ?  Note that this assumes (and checks) that there
// are no spill or reload ranges in play at this point; there should not be.
// Note also, this is very conservative: it only merges the case where the two
// ranges are separated by a block boundary.  From measurements, it appears that
// this is the only case where merging is actually a win, though.
fn frags_are_mergeable(
    frag1: &RangeFrag,
    frag1metrics: &RangeFragMetrics,
    frag2: &RangeFrag,
    frag2metrics: &RangeFragMetrics,
) -> bool {
    assert!(frag1.first.pt().is_use_or_def());
    assert!(frag1.last.pt().is_use_or_def());
    assert!(frag2.first.pt().is_use_or_def());
    assert!(frag2.last.pt().is_use_or_def());

    if frag1metrics.bix != frag2metrics.bix
        && frag1.last.iix().plus(1) == frag2.first.iix()
        && frag1.last.pt() == Point::Def
        && frag2.first.pt() == Point::Use
    {
        assert!(
            frag1metrics.kind == RangeFragKind::LiveOut || frag1metrics.kind == RangeFragKind::Thru
        );
        assert!(
            frag2metrics.kind == RangeFragKind::LiveIn || frag2metrics.kind == RangeFragKind::Thru
        );
        return true;
    }

    false
}

// HELPER FUNCTION
// Create a compressed version of the fragments listed in `sorted_frag_ixs`,
// taking the opportunity to dereference them (look them up in `frag_env`) in
// the process.  Assumes that `sorted_frag_ixs` is indeed ordered so that the
// dereferenced frag sequence is in instruction order.
#[inline(never)]
fn deref_and_compress_sorted_range_frag_ixs(
    stats_num_vfrags_uncompressed: &mut usize,
    stats_num_vfrags_compressed: &mut usize,
    sorted_frag_ixs: &SortedRangeFragIxs,
    frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
    frag_metrics_env: &TypedIxVec<RangeFragIx, RangeFragMetrics>,
) -> SortedRangeFrags {
    let mut res = SortedRangeFrags::empty();

    let frag_ixs = &sorted_frag_ixs.frag_ixs;
    let num_frags = frag_ixs.len();
    *stats_num_vfrags_uncompressed += num_frags;

    if num_frags == 1 {
        // Nothing we can do.  Shortcut.
        res.frags.push(frag_env[frag_ixs[0]].clone());
        *stats_num_vfrags_compressed += 1;
        return res;
    }

    // BEGIN merge this frag sequence as much as possible
    assert!(num_frags > 1);

    let mut s = 0; // start point of current group
    let mut e = 0; // end point of current group
    loop {
        if s >= num_frags {
            break;
        }
        while e + 1 < num_frags
            && frags_are_mergeable(
                &frag_env[frag_ixs[e]],
                &frag_metrics_env[frag_ixs[e]],
                &frag_env[frag_ixs[e + 1]],
                &frag_metrics_env[frag_ixs[e + 1]],
            )
        {
            e += 1;
        }
        // s to e inclusive is a maximal group
        // emit (s, e)
        if s == e {
            // Can't compress this one
            res.frags.push(frag_env[frag_ixs[s]].clone());
        } else {
            let compressed_frag = RangeFrag {
                first: frag_env[frag_ixs[s]].first,
                last: frag_env[frag_ixs[e]].last,
            };
            res.frags.push(compressed_frag);
        }
        // move on
        s = e + 1;
        e = s;
    }
    // END merge this frag sequence as much as possible

    *stats_num_vfrags_compressed += res.frags.len();
    res
}

// HELPER FUNCTION
// Computes the `size`, `total_cost` and `spill_cost` values for a
// VirtualRange, while being very careful to avoid overflow.
fn calc_virtual_range_metrics(
    sorted_frag_ixs: &SortedRangeFragIxs,
    frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
    frag_metrics_env: &TypedIxVec<RangeFragIx, RangeFragMetrics>,
    estimated_frequencies: &TypedIxVec<BlockIx, u32>,
) -> (u16, u32, SpillCost) {
    assert!(frag_env.len() == frag_metrics_env.len());

    let mut tot_size: u32 = 0;
    let mut tot_cost: u32 = 0;

    for fix in &sorted_frag_ixs.frag_ixs {
        let frag = &frag_env[*fix];
        let frag_metrics = &frag_metrics_env[*fix];

        // Add on the size of this fragment, but make sure we can't
        // overflow a u32 no matter how many fragments there are.
        let mut frag_size: u32 = frag.last.iix().get() - frag.first.iix().get() + 1;
        frag_size = min(frag_size, 0xFFFFu32);
        tot_size += frag_size;
        tot_size = min(tot_size, 0xFFFFu32);

        // Here, tot_size <= 0xFFFF.  frag.count is u16.  estFreq[] is u32.
        // We must be careful not to overflow tot_cost, which is u32.
        let mut new_tot_cost: u64 = frag_metrics.count as u64; // at max 16 bits
        new_tot_cost *= estimated_frequencies[frag_metrics.bix] as u64; // at max 48 bits
        new_tot_cost += tot_cost as u64; // at max 48 bits + epsilon
        new_tot_cost = min(new_tot_cost, 0xFFFF_FFFFu64);

        // Hence this is safe.
        tot_cost = new_tot_cost as u32;
    }

    debug_assert!(tot_size <= 0xFFFF);
    let size = tot_size as u16;
    let total_cost = tot_cost;

    // Divide tot_cost by the total length, so as to increase the apparent
    // spill cost of short LRs.  This is so as to give the advantage to
    // short LRs in competition for registers.  This seems a bit of a hack
    // to me, but hey ..
    debug_assert!(tot_size >= 1);
    let spill_cost = SpillCost::finite(tot_cost as f32 / tot_size as f32);

    (size, total_cost, spill_cost)
}

// MAIN FUNCTION in this section
#[inline(never)]
fn create_and_add_range(
    stats_num_vfrags_uncompressed: &mut usize,
    stats_num_vfrags_compressed: &mut usize,
    result_real: &mut TypedIxVec<RealRangeIx, RealRange>,
    result_virtual: &mut TypedIxVec<VirtualRangeIx, VirtualRange>,
    reg: Reg,
    sorted_frag_ixs: SortedRangeFragIxs,
    frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
    frag_metrics_env: &TypedIxVec<RangeFragIx, RangeFragMetrics>,
    estimated_frequencies: &TypedIxVec<BlockIx, u32>,
) {
    if reg.is_virtual() {
        // First, compute the VirtualRange metrics.  This has to be done
        // before fragment compression.
        let (size, total_cost, spill_cost) = calc_virtual_range_metrics(
            &sorted_frag_ixs,
            frag_env,
            frag_metrics_env,
            estimated_frequencies,
        );

        // Now it's safe to compress the fragments.
        let sorted_frags = deref_and_compress_sorted_range_frag_ixs(
            stats_num_vfrags_uncompressed,
            stats_num_vfrags_compressed,
            &sorted_frag_ixs,
            frag_env,
            frag_metrics_env,
        );

        result_virtual.push(VirtualRange {
            vreg: reg.to_virtual_reg(),
            rreg: None,
            sorted_frags,
            is_ref: false, // analysis_reftypes.rs may later change this
            size,
            total_cost,
            spill_cost,
        });
    } else {
        result_real.push(RealRange {
            rreg: reg.to_real_reg(),
            sorted_frags: sorted_frag_ixs,
            is_ref: false, // analysis_reftypes.rs may later change this
        });
    }
}

//=============================================================================
// Merging of RangeFrags, producing the final LRs, including metrication and
// compression

// We need this in order to construct a UnionFind<usize>.
impl ToFromU32 for usize {
    // 64 bit
    #[cfg(target_pointer_width = "64")]
    fn to_u32(x: usize) -> u32 {
        if x < 0x1_0000_0000usize {
            x as u32
        } else {
            panic!("impl ToFromU32 for usize: to_u32: out of range")
        }
    }
    #[cfg(target_pointer_width = "64")]
    fn from_u32(x: u32) -> usize {
        x as usize
    }
    // 32 bit
    #[cfg(target_pointer_width = "32")]
    fn to_u32(x: usize) -> u32 {
        x as u32
    }
    #[cfg(target_pointer_width = "32")]
    fn from_u32(x: u32) -> usize {
        x as usize
    }
}

#[inline(never)]
pub fn merge_range_frags(
    frag_ix_vec_per_reg: &Vec</*rreg index, then vreg index, */ SmallVec<[RangeFragIx; 8]>>,
    frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
    frag_metrics_env: &TypedIxVec<RangeFragIx, RangeFragMetrics>,
    estimated_frequencies: &TypedIxVec<BlockIx, u32>,
    cfg_info: &CFGInfo,
    reg_universe: &RealRegUniverse,
    vreg_classes: &Vec</*vreg index,*/ RegClass>,
) -> (
    TypedIxVec<RealRangeIx, RealRange>,
    TypedIxVec<VirtualRangeIx, VirtualRange>,
) {
    assert!(frag_env.len() == frag_metrics_env.len());
    let mut stats_num_total_incoming_frags = 0;
    let mut stats_num_total_incoming_regs = 0;
    for all_frag_ixs_for_reg in frag_ix_vec_per_reg {
        stats_num_total_incoming_frags += all_frag_ixs_for_reg.len();
        if all_frag_ixs_for_reg.len() > 0 {
            stats_num_total_incoming_regs += 1;
        }
    }
    info!("    merge_range_frags: begin");
    info!("      in: {} in frag_env", frag_env.len());
    info!(
        "      in: {} regs containing in total {} frags",
        stats_num_total_incoming_regs, stats_num_total_incoming_frags
    );

    let mut stats_num_single_grps = 0;
    let mut stats_num_local_frags = 0;

    let mut stats_num_multi_grps_small = 0;
    let mut stats_num_multi_grps_large = 0;
    let mut stats_size_multi_grps_small = 0;
    let mut stats_size_multi_grps_large = 0;

    let mut stats_num_vfrags_uncompressed = 0;
    let mut stats_num_vfrags_compressed = 0;

    let mut result_real = TypedIxVec::<RealRangeIx, RealRange>::new();
    let mut result_virtual = TypedIxVec::<VirtualRangeIx, VirtualRange>::new();

    // BEGIN per_reg_loop
    for (reg_ix, all_frag_ixs_for_reg) in frag_ix_vec_per_reg.iter().enumerate() {
        let n_frags_for_this_reg = all_frag_ixs_for_reg.len();

        // The reg might never have been mentioned at all, especially if it's a real reg.
        if n_frags_for_this_reg == 0 {
            continue;
        }

        let reg_ix = reg_ix as u32;
        let reg = reg_ix_to_reg(reg_universe, vreg_classes, reg_ix);

        // Do some shortcutting.  First off, if there's only one frag for this reg, we can directly
        // give it its own live range, and have done.
        if n_frags_for_this_reg == 1 {
            create_and_add_range(
                &mut stats_num_vfrags_uncompressed,
                &mut stats_num_vfrags_compressed,
                &mut result_real,
                &mut result_virtual,
                reg,
                SortedRangeFragIxs::unit(all_frag_ixs_for_reg[0], frag_env),
                frag_env,
                frag_metrics_env,
                estimated_frequencies,
            );
            stats_num_single_grps += 1;
            continue;
        }

        // BEGIN merge `all_frag_ixs_for_reg` entries as much as possible.
        //
        // but .. if we come across independents (RangeKind::Local), pull them out immediately.

        // Try to avoid heap allocation if at all possible.  Up to 100 entries are very
        // common, so this is sized large to be effective.  Each entry is definitely
        // 16 bytes at most, so this will use 4KB stack at most, which is reasonable.
        let mut triples = SmallVec::<[(RangeFragIx, RangeFragKind, BlockIx); 256]>::new();

        // Create `triples`.  We will use it to guide the merging phase, but it is immutable there.
        for fix in all_frag_ixs_for_reg {
            let frag_metrics = &frag_metrics_env[*fix];

            if frag_metrics.kind == RangeFragKind::Local {
                // This frag is Local (standalone).  Give it its own Range and move on.  This is an
                // optimisation, but it's also necessary: the main fragment-merging logic below
                // relies on the fact that the fragments it is presented with are all either
                // LiveIn, LiveOut or Thru.
                create_and_add_range(
                    &mut stats_num_vfrags_uncompressed,
                    &mut stats_num_vfrags_compressed,
                    &mut result_real,
                    &mut result_virtual,
                    reg,
                    SortedRangeFragIxs::unit(*fix, frag_env),
                    frag_env,
                    frag_metrics_env,
                    estimated_frequencies,
                );
                stats_num_local_frags += 1;
                continue;
            }

            // This frag isn't Local (standalone) so we have to process it the slow way.
            triples.push((*fix, frag_metrics.kind, frag_metrics.bix));
        }

        let triples_len = triples.len();

        // This is the core of the merging algorithm.
        //
        // For each ix@(fix, kind, bix) in `triples` (order unimportant):
        //
        // (1) "Merge with blocks that are live 'downstream' from here":
        //     if fix is live-out or live-through:
        //        for b in succs[bix]
        //           for each ix2@(fix2, kind2, bix2) in `triples`
        //              if bix2 == b && kind2 is live-in or live-through:
        //                  merge(ix, ix2)
        //
        // (2) "Merge with blocks that are live 'upstream' from here":
        //     if fix is live-in or live-through:
        //        for b in preds[bix]
        //           for each ix2@(fix2, kind2, bix2) in `triples`
        //              if bix2 == b && kind2 is live-out or live-through:
        //                  merge(ix, ix2)
        //
        // `triples` remains unchanged.  The equivalence class info is accumulated
        // in `eclasses_uf` instead.  `eclasses_uf` entries are indices into
        // `triples`.
        //
        // Now, you might think it necessary to do both (1) and (2).  But no, they
        // are mutually redundant, since if two blocks are connected by a live
        // flow from one to the other, then they are also connected in the other
        // direction.  Hence checking one of the directions is enough.
        let mut eclasses_uf = UnionFind::<usize>::new(triples_len);

        // We have two schemes for group merging, one of which is N^2 in the
        // length of triples, the other is N-log-N, but with higher constant
        // factors.  Some experimentation with the bz2 test on a Cortex A57 puts
        // the optimal crossover point between 200 and 300; it's not critical.
        // Having this protects us against bad behaviour for huge inputs whilst
        // still being fast for small inputs.
        if triples_len <= 250 {
            // The simple way, which is N^2 in the length of `triples`.
            for (ix, (_fix, kind, bix)) in triples.iter().enumerate() {
                // Deal with liveness flows outbound from `fix`. Meaning, (1) above.
                if *kind == RangeFragKind::LiveOut || *kind == RangeFragKind::Thru {
                    for b in cfg_info.succ_map[*bix].iter() {
                        // Visit all entries in `triples` that are for `b`.
                        for (ix2, (_fix2, kind2, bix2)) in triples.iter().enumerate() {
                            if *bix2 != *b || *kind2 == RangeFragKind::LiveOut {
                                continue;
                            }
                            debug_assert!(
                                *kind2 == RangeFragKind::LiveIn || *kind2 == RangeFragKind::Thru
                            );
                            // Now we know that liveness for this reg "flows" from `triples[ix]` to
                            // `triples[ix2]`.  So those two frags must be part of the same live
                            // range.  Note this.
                            if ix != ix2 {
                                eclasses_uf.union(ix, ix2); // Order of args irrelevant
                            }
                        }
                    }
                }
            } // outermost iteration over `triples`

            stats_num_multi_grps_small += 1;
            stats_size_multi_grps_small += triples_len;
        } else {
            // The more complex way, which is N-log-N in the length of `triples`.  This is the same
            // as the simple way, except that the innermost loop, which is a linear search in
            // `triples` to find entries for some block `b`, is replaced by a binary search.  This
            // means that `triples` first needs to be sorted by block index.
            triples.sort_unstable_by_key(|(_, _, bix)| *bix);

            for (ix, (_fix, kind, bix)) in triples.iter().enumerate() {
                // Deal with liveness flows outbound from `fix`.  Meaning, (1) above.
                if *kind == RangeFragKind::LiveOut || *kind == RangeFragKind::Thru {
                    for b in cfg_info.succ_map[*bix].iter() {
                        // Visit all entries in `triples` that are for `b`.  Binary search
                        // `triples` to find the lowest-indexed entry for `b`.
                        let mut ix_left = 0;
                        let mut ix_right = triples_len;
                        while ix_left < ix_right {
                            let m = (ix_left + ix_right) >> 1;
                            if triples[m].2 < *b {
                                ix_left = m + 1;
                            } else {
                                ix_right = m;
                            }
                        }

                        // It might be that there is no block for `b` in the sequence.  That's
                        // legit; it just means that block `bix` jumps to a successor where the
                        // associated register isn't live-in/thru.  A failure to find `b` can be
                        // indicated one of two ways:
                        //
                        // * ix_left == triples_len
                        // * ix_left < triples_len and b < triples[ix_left].b
                        //
                        // In both cases I *think* the 'loop_over_entries_for_b below will not do
                        // anything.  But this is all a bit hairy, so let's convert the second
                        // variant into the first, so as to make it obvious that the loop won't do
                        // anything.

                        // ix_left now holds the lowest index of any `triples` entry for block `b`.
                        // Assert this.
                        if ix_left < triples_len && *b < triples[ix_left].2 {
                            ix_left = triples_len;
                        }
                        if ix_left < triples_len {
                            assert!(ix_left == 0 || triples[ix_left - 1].2 < *b);
                        }

                        // ix2 plays the same role as in the quadratic version.  ix_left and
                        // ix_right are not used after this point.
                        let mut ix2 = ix_left;
                        loop {
                            let (_fix2, kind2, bix2) = match triples.get(ix2) {
                                None => break,
                                Some(triple) => *triple,
                            };
                            if *b < bix2 {
                                // We've come to the end of the sequence of `b`-blocks.
                                break;
                            }
                            debug_assert!(*b == bix2);
                            if kind2 == RangeFragKind::LiveOut {
                                ix2 += 1;
                                continue;
                            }
                            // Now we know that liveness for this reg "flows" from `triples[ix]` to
                            // `triples[ix2]`.  So those two frags must be part of the same live
                            // range.  Note this.
                            eclasses_uf.union(ix, ix2);
                            ix2 += 1;
                        }

                        if ix2 + 1 < triples_len {
                            debug_assert!(*b < triples[ix2 + 1].2);
                        }
                    }
                }
            }

            stats_num_multi_grps_large += 1;
            stats_size_multi_grps_large += triples_len;
        }

        // Now `eclasses_uf` contains the results of the merging-search.  Visit each of its
        // equivalence classes in turn, and convert each into a virtual or real live range as
        // appropriate.
        let eclasses = eclasses_uf.get_equiv_classes();
        for leader_triple_ix in eclasses.equiv_class_leaders_iter() {
            // `leader_triple_ix` is an eclass leader.  Enumerate the whole eclass.
            let mut frag_ixs = SmallVec::<[RangeFragIx; 4]>::new();
            for triple_ix in eclasses.equiv_class_elems_iter(leader_triple_ix) {
                frag_ixs.push(triples[triple_ix].0 /*first field is frag ix*/);
            }
            let sorted_frags = SortedRangeFragIxs::new(frag_ixs, &frag_env);
            create_and_add_range(
                &mut stats_num_vfrags_uncompressed,
                &mut stats_num_vfrags_compressed,
                &mut result_real,
                &mut result_virtual,
                reg,
                sorted_frags,
                frag_env,
                frag_metrics_env,
                estimated_frequencies,
            );
        }
        // END merge `all_frag_ixs_for_reg` entries as much as possible
    } // END per reg loop

    info!("      in: {} single groups", stats_num_single_grps);
    info!(
        "      in: {} local frags in multi groups",
        stats_num_local_frags
    );
    info!(
        "      in: {} small multi groups, {} small multi group total size",
        stats_num_multi_grps_small, stats_size_multi_grps_small
    );
    info!(
        "      in: {} large multi groups, {} large multi group total size",
        stats_num_multi_grps_large, stats_size_multi_grps_large
    );
    info!(
        "      out: {} VLRs, {} RLRs",
        result_virtual.len(),
        result_real.len()
    );
    info!(
        "      compress vfrags: in {}, out {}",
        stats_num_vfrags_uncompressed, stats_num_vfrags_compressed
    );
    info!("    merge_range_frags: end");

    (result_real, result_virtual)
}

//=============================================================================
// Auxiliary activities that mostly fall under the category "dataflow analysis", but are not
// part of the main dataflow analysis pipeline.

// Dataflow and liveness together create vectors of VirtualRanges and RealRanges.  These define
// (amongst other things) mappings from VirtualRanges to VirtualRegs and from RealRanges to
// RealRegs.  However, we often need the inverse mappings: from VirtualRegs to (sets of
// VirtualRanges) and from RealRegs to (sets of) RealRanges.  This function computes those
// inverse mappings.  They are used by BT's coalescing analysis, and for the dataflow analysis
// that supports reftype handling.
#[inline(never)]
pub fn compute_reg_to_ranges_maps<F: Function>(
    func: &F,
    univ: &RealRegUniverse,
    rlr_env: &TypedIxVec<RealRangeIx, RealRange>,
    vlr_env: &TypedIxVec<VirtualRangeIx, VirtualRange>,
) -> RegToRangesMaps {
    // Arbitrary, but chosen after quite some profiling, so as to minimise both instruction
    // count and number of `malloc` calls.  Don't mess with this without first collecting
    // comprehensive measurements.  Note that if you set this above 255, the type of
    // `r/vreg_approx_frag_counts` below will need to change accordingly.
    const MANY_FRAGS_THRESH: u8 = 200;

    // Adds `to_add` to `*counter`, taking care not to overflow it in the process.
    let add_u8_usize_saturate_to_u8 = |counter: &mut u8, mut to_add: usize| {
        if to_add > 0xFF {
            to_add = 0xFF;
        }
        let mut n = *counter as usize;
        n += to_add as usize;
        // n is at max 0x1FE (510)
        if n > 0xFF {
            n = 0xFF;
        }
        *counter = n as u8;
    };

    // We have in hand the virtual live ranges.  Each of these carries its
    // associated vreg.  So in effect we have a VLR -> VReg mapping.  We now
    // invert that, so as to generate a mapping from VRegs to their containing
    // VLRs.
    //
    // Note that multiple VLRs may map to the same VReg.  So the inverse mapping
    // will actually be from VRegs to a set of VLRs.  In most cases, we expect
    // the virtual-registerised-code given to this allocator to be derived from
    // SSA, in which case each VReg will have only one VLR.  So in this case,
    // the cost of first creating the mapping, and then looking up all the VRegs
    // in moves in it, will have cost linear in the size of the input function.
    //
    // NB re the SmallVec.  That has set semantics (no dups).

    let num_vregs = func.get_num_vregs();
    let num_rregs = univ.allocable;

    let mut vreg_approx_frag_counts = vec![0u8; num_vregs];
    let mut vreg_to_vlrs_map = vec![SmallVec::<[VirtualRangeIx; 3]>::new(); num_vregs];
    for (vlr, n) in vlr_env.iter().zip(0..) {
        let vlrix = VirtualRangeIx::new(n);
        let vreg: VirtualReg = vlr.vreg;
        // Now we know that there's a VLR `vlr` that is for VReg `vreg`.  Update the inverse
        // mapping accordingly.  We know we are stepping sequentially through the VLR (index)
        // space, so we'll never see the same VLRIx twice.  Hence there's no need to check for
        // dups when adding a VLR index to an existing binding for a VReg.
        //
        // If this array-indexing fails, it means the client's `.get_num_vregs()` function
        // claims there are fewer virtual regs than we actually observe in the code it gave us.
        // So it's a bug in the client.
        let vreg_index = vreg.get_index();
        vreg_to_vlrs_map[vreg_index].push(vlrix);

        let vlr_num_frags = vlr.sorted_frags.frags.len();
        add_u8_usize_saturate_to_u8(&mut vreg_approx_frag_counts[vreg_index], vlr_num_frags);
    }

    // Same for the real live ranges.
    let mut rreg_approx_frag_counts = vec![0u8; num_rregs];
    let mut rreg_to_rlrs_map = vec![SmallVec::<[RealRangeIx; 6]>::new(); num_rregs];
    for (rlr, n) in rlr_env.iter().zip(0..) {
        let rlrix = RealRangeIx::new(n);
        let rreg: RealReg = rlr.rreg;
        // If this array-indexing fails, it means something has gone wrong with sanitisation of
        // real registers -- that should ensure that we never see a real register with an index
        // greater than `univ.allocable`.  So it's a bug in the allocator's analysis phases.
        let rreg_index = rreg.get_index();
        rreg_to_rlrs_map[rreg_index].push(rlrix);

        let rlr_num_frags = rlr.sorted_frags.frag_ixs.len();
        add_u8_usize_saturate_to_u8(&mut rreg_approx_frag_counts[rreg_index], rlr_num_frags);
    }

    // Create sets indicating which regs have "many" live ranges.  Hopefully very few.
    // Since the `push`ed-in values are supplied by the `zip(0..)` iterator, they are
    // guaranteed duplicate-free, as required by the defn of `RegToRangesMaps`.
    let mut vregs_with_many_frags = Vec::<u32 /*VirtualReg index*/>::with_capacity(16);
    for (count, vreg_ix) in vreg_approx_frag_counts.iter().zip(0..) {
        if *count >= MANY_FRAGS_THRESH {
            vregs_with_many_frags.push(vreg_ix);
        }
    }

    let mut rregs_with_many_frags = Vec::<u32 /*RealReg index*/>::with_capacity(64);
    for (count, rreg_ix) in rreg_approx_frag_counts.iter().zip(0..) {
        if *count >= MANY_FRAGS_THRESH {
            rregs_with_many_frags.push(rreg_ix);
        }
    }

    RegToRangesMaps {
        rreg_to_rlrs_map,
        vreg_to_vlrs_map,
        rregs_with_many_frags,
        vregs_with_many_frags,
        many_frags_thresh: MANY_FRAGS_THRESH as usize,
    }
}

// Collect info about registers that are connected by moves.
#[inline(never)]
pub fn collect_move_info<F: Function>(
    func: &F,
    reg_vecs_and_bounds: &RegVecsAndBounds,
    est_freqs: &TypedIxVec<BlockIx, u32>,
) -> MoveInfo {
    let mut moves = Vec::<MoveInfoElem>::new();
    for b in func.blocks() {
        let block_eef = est_freqs[b];
        for iix in func.block_insns(b) {
            let insn = &func.get_insn(iix);
            let im = func.is_move(insn);
            match im {
                None => {}
                Some((wreg, reg)) => {
                    let iix_bounds = &reg_vecs_and_bounds.bounds[iix];
                    // It might seem strange to assert that `defs_len` and/or
                    // `uses_len` is <= 1 rather than == 1.  The reason is
                    // that either or even both registers might be ones which
                    // are not available to the allocator.  Hence they will
                    // have been removed by the sanitisation machinery before
                    // we get to this point.  If either is missing, we
                    // unfortunately can't coalesce the move away, and just
                    // have to live with it.
                    //
                    // If any of the following five assertions fail, the
                    // client's `is_move` is probably lying to us.
                    assert!(iix_bounds.uses_len <= 1);
                    assert!(iix_bounds.defs_len <= 1);
                    assert!(iix_bounds.mods_len == 0);
                    if iix_bounds.uses_len == 1 && iix_bounds.defs_len == 1 {
                        let reg_vecs = &reg_vecs_and_bounds.vecs;
                        assert!(reg_vecs.uses[iix_bounds.uses_start as usize] == reg);
                        assert!(reg_vecs.defs[iix_bounds.defs_start as usize] == wreg.to_reg());
                        let dst = wreg.to_reg();
                        let src = reg;
                        let est_freq = block_eef;
                        moves.push(MoveInfoElem {
                            dst,
                            src,
                            iix,
                            est_freq,
                        });
                    }
                }
            }
        }
    }

    MoveInfo { moves }
}