1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#![allow(non_snake_case)]
#![allow(non_camel_case_types)]
//! Copy-coalescing analysis for the backtracking allocator.
use log::{debug, info, log_enabled, Level};
use smallvec::{smallvec, SmallVec};
use crate::data_structures::{
BlockIx, InstIx, InstPoint, RangeFrag, RangeFragIx, RealRange, RealRangeIx, RealReg,
RealRegUniverse, Reg, RegVecsAndBounds, SpillCost, TypedIxVec, VirtualRange, VirtualRangeIx,
VirtualReg,
};
use crate::union_find::{ToFromU32, UnionFind, UnionFindEquivClasses};
use crate::Function;
//=============================================================================
// Analysis in support of copy coalescing.
//
// This detects and collects information about all copy coalescing
// opportunities in the incoming function. It does not use that information
// at all -- that is for the main allocation loop to do.
// A coalescing hint for a virtual live range. The u32 is an arbitrary
// "weight" value which indicates a relative strength-of-preference for the
// hint. It exists because a VLR can have arbitrarily many copy
// instructions at its "boundary", and hence arbitrarily many hints. Of
// course the allocator core can honour at most one of them, so it needs a
// way to choose between them. In this implementation, the u32s are simply
// the estimated execution count of the associated copy instruction.
#[derive(Clone)]
pub enum Hint {
// I would like to have the same real register as some other virtual range.
SameAs(VirtualRangeIx, u32),
// I would like to have exactly this real register.
Exactly(RealReg, u32),
}
fn show_hint(h: &Hint, univ: &RealRegUniverse) -> String {
match h {
Hint::SameAs(vlrix, weight) => format!("(SameAs {:?}, weight={})", vlrix, weight),
Hint::Exactly(rreg, weight) => format!(
"(Exactly {}, weight={})",
rreg.to_reg().show_with_rru(&univ),
weight
),
}
}
impl Hint {
fn get_weight(&self) -> u32 {
match self {
Hint::SameAs(_vlrix, weight) => *weight,
Hint::Exactly(_rreg, weight) => *weight,
}
}
}
// We need this in order to construct a UnionFind<VirtualRangeIx>.
impl ToFromU32 for VirtualRangeIx {
fn to_u32(x: VirtualRangeIx) -> u32 {
x.get()
}
fn from_u32(x: u32) -> VirtualRangeIx {
VirtualRangeIx::new(x)
}
}
//=============================================================================
// Coalescing analysis: top level function
// This performs coalescing analysis and returns info as a 4-tuple. Note that
// it also may change the spill costs for some of the VLRs in `vlr_env` to
// better reflect the spill cost situation in the presence of coalescing.
#[inline(never)]
pub fn do_coalescing_analysis<F: Function>(
func: &F,
reg_vecs_and_bounds: &RegVecsAndBounds,
rlr_env: &TypedIxVec<RealRangeIx, RealRange>,
vlr_env: &mut TypedIxVec<VirtualRangeIx, VirtualRange>,
frag_env: &TypedIxVec<RangeFragIx, RangeFrag>,
est_freqs: &TypedIxVec<BlockIx, u32>,
univ: &RealRegUniverse,
) -> (
TypedIxVec<VirtualRangeIx, SmallVec<[Hint; 8]>>,
UnionFindEquivClasses<VirtualRangeIx>,
TypedIxVec<InstIx, bool>,
Vec</*vreg index,*/ SmallVec<[VirtualRangeIx; 3]>>,
) {
info!("");
info!("do_coalescing_analysis: begin");
// We have in hand the virtual live ranges. Each of these carries its
// associated vreg. So in effect we have a VLR -> VReg mapping. We now
// invert that, so as to generate a mapping from VRegs to their containing
// VLRs.
//
// Note that multiple VLRs may map to the same VReg. So the inverse mapping
// will actually be from VRegs to a set of VLRs. In most cases, we expect
// the virtual-registerised-code given to this allocator to be derived from
// SSA, in which case each VReg will have only one VLR. So in this case,
// the cost of first creating the mapping, and then looking up all the VRegs
// in moves in it, will have cost linear in the size of the input function.
//
// It would be convenient here to know how many VRegs there are ahead of
// time, but until then we'll discover it dynamically.
// NB re the SmallVec. That has set semantics (no dups)
// FIXME use SmallVec for the VirtualRangeIxs. Or even a sparse set.
let mut vreg_to_vlrs_map = Vec::</*vreg index,*/ SmallVec<[VirtualRangeIx; 3]>>::new();
for (vlr, n) in vlr_env.iter().zip(0..) {
let vlrix = VirtualRangeIx::new(n);
let vreg: VirtualReg = vlr.vreg;
// Now we know that there's a VLR `vlr` that is for VReg `vreg`. Update
// the inverse mapping accordingly. That may involve resizing it, since
// we have no idea of the order in which we will first encounter VRegs.
// By contrast, we know we are stepping sequentially through the VLR
// (index) space, and we'll never see the same VLRIx twice. So there's no
// need to check for dups when adding a VLR index to an existing binding
// for a VReg.
let vreg_ix = vreg.get_index();
while vreg_to_vlrs_map.len() <= vreg_ix {
vreg_to_vlrs_map.push(smallvec![]); // This is very un-clever
}
vreg_to_vlrs_map[vreg_ix].push(vlrix);
}
// Same for the real live ranges
let mut rreg_to_rlrs_map = Vec::</*rreg index,*/ Vec<RealRangeIx>>::new();
for (rlr, n) in rlr_env.iter().zip(0..) {
let rlrix = RealRangeIx::new(n);
let rreg: RealReg = rlr.rreg;
let rreg_ix = rreg.get_index();
while rreg_to_rlrs_map.len() <= rreg_ix {
rreg_to_rlrs_map.push(vec![]); // This is very un-clever
}
rreg_to_rlrs_map[rreg_ix].push(rlrix);
}
// And what do we got?
//for (vlrixs, vreg) in vreg_to_vlrs_map.iter().zip(0..) {
// println!("QQQQ vreg v{:?} -> vlrixs {:?}", vreg, vlrixs);
//}
//for (rlrixs, rreg) in rreg_to_rlrs_map.iter().zip(0..) {
// println!("QQQQ rreg r{:?} -> rlrixs {:?}", rreg, rlrixs);
//}
// Range end checks for VRegs
let doesVRegHaveXXat
// `xxIsLastUse` is true means "XX is last use"
// `xxIsLastUse` is false means "XX is first def"
= |xxIsLastUse: bool, vreg: VirtualReg, iix: InstIx|
-> Option<VirtualRangeIx> {
let vreg_no = vreg.get_index();
let vlrixs = &vreg_to_vlrs_map[vreg_no];
for vlrix in vlrixs {
let frags = &vlr_env[*vlrix].sorted_frags;
for fix in &frags.frag_ixs {
let frag = &frag_env[*fix];
if xxIsLastUse {
// We're checking to see if `vreg` has a last use in this block
// (well, technically, a fragment end in the block; we don't care if
// it is later redefined in the same block) .. anyway ..
// We're checking to see if `vreg` has a last use in this block
// at `iix`.u
if frag.last == InstPoint::new_use(iix) {
return Some(*vlrix);
}
} else {
// We're checking to see if `vreg` has a first def in this block
// at `iix`.d
if frag.first == InstPoint::new_def(iix) {
return Some(*vlrix);
}
}
}
}
None
};
// Range end checks for RRegs
let doesRRegHaveXXat
// `xxIsLastUse` is true means "XX is last use"
// `xxIsLastUse` is false means "XX is first def"
= |xxIsLastUse: bool, rreg: RealReg, iix: InstIx|
-> Option<RealRangeIx> {
let rreg_no = rreg.get_index();
let rlrixs = &rreg_to_rlrs_map[rreg_no];
for rlrix in rlrixs {
let frags = &rlr_env[*rlrix].sorted_frags;
for fix in &frags.frag_ixs {
let frag = &frag_env[*fix];
if xxIsLastUse {
// We're checking to see if `rreg` has a last use in this block
// at `iix`.u
if frag.last == InstPoint::new_use(iix) {
return Some(*rlrix);
}
} else {
// We're checking to see if `rreg` has a first def in this block
// at `iix`.d
if frag.first == InstPoint::new_def(iix) {
return Some(*rlrix);
}
}
}
}
None
};
// Make up a vector of registers that are connected by moves:
//
// (dstReg, srcReg, transferring insn, estimated execution count of the
// containing block)
//
// This can contain real-to-real moves, which we obviously can't do anything
// about. We'll remove them in the next pass.
let mut connectedByMoves = Vec::<(Reg, Reg, InstIx, u32)>::new();
for b in func.blocks() {
let block_eef = est_freqs[b];
for iix in func.block_insns(b) {
let insn = &func.get_insn(iix);
let im = func.is_move(insn);
match im {
None => {}
Some((wreg, reg)) => {
let iix_bounds = ®_vecs_and_bounds.bounds[iix];
// It might seem strange to assert that `defs_len` and/or
// `uses_len` is <= 1 rather than == 1. The reason is
// that either or even both registers might be ones which
// are not available to the allocator. Hence they will
// have been removed by the sanitisation machinery before
// we get to this point. If either is missing, we
// unfortunately can't coalesce the move away, and just
// have to live with it.
//
// If any of the following five assertions fail, the
// client's `is_move` is probably lying to us.
assert!(iix_bounds.uses_len <= 1);
assert!(iix_bounds.defs_len <= 1);
assert!(iix_bounds.mods_len == 0);
if iix_bounds.uses_len == 1 && iix_bounds.defs_len == 1 {
let reg_vecs = ®_vecs_and_bounds.vecs;
assert!(reg_vecs.uses[iix_bounds.uses_start as usize] == reg);
assert!(reg_vecs.defs[iix_bounds.defs_start as usize] == wreg.to_reg());
connectedByMoves.push((wreg.to_reg(), reg, iix, block_eef));
}
}
}
}
}
// XX these sub-vectors could contain duplicates, I suppose, for example if
// there are two identical copy insns at different points on the "boundary"
// for some VLR. I don't think it matters though since we're going to rank
// the hints by strength and then choose at most one.
let mut hints = TypedIxVec::<VirtualRangeIx, SmallVec<[Hint; 8]>>::new();
hints.resize(vlr_env.len(), smallvec![]);
let mut is_vv_boundary_move = TypedIxVec::<InstIx, bool>::new();
is_vv_boundary_move.resize(func.insns().len() as u32, false);
// The virtual-to-virtual equivalence classes we're collecting.
let mut vlrEquivClassesUF = UnionFind::<VirtualRangeIx>::new(vlr_env.len() as usize);
// A list of `VirtualRange`s for which the `total_cost` (hence also their
// `spill_cost`) should be adjusted downwards by the supplied `u32`. We
// can't do this directly in the loop below due to borrowing constraints,
// hence we collect the required info in this vector and do it in a second
// loop.
let mut decVLRcosts = Vec::<(VirtualRangeIx, VirtualRangeIx, u32)>::new();
for (rDst, rSrc, iix, block_eef) in connectedByMoves {
debug!(
"QQQQ connectedByMoves {:?} {:?} <- {:?} (block_eef {})",
iix, rDst, rSrc, block_eef
);
match (rDst.is_virtual(), rSrc.is_virtual()) {
(true, true) => {
// Check for a V <- V hint.
let rSrcV = rSrc.to_virtual_reg();
let rDstV = rDst.to_virtual_reg();
let mb_vlrSrc = doesVRegHaveXXat(/*xxIsLastUse=*/ true, rSrcV, iix);
let mb_vlrDst = doesVRegHaveXXat(/*xxIsLastUse=*/ false, rDstV, iix);
debug!("QQQQ mb_vlrSrc {:?} mb_vlrDst {:?}", mb_vlrSrc, mb_vlrDst);
if mb_vlrSrc.is_some() && mb_vlrDst.is_some() {
let vlrSrc = mb_vlrSrc.unwrap();
let vlrDst = mb_vlrDst.unwrap();
// Add hints for both VLRs, since we don't know which one will
// assign first. Indeed, a VLR may be assigned and un-assigned
// arbitrarily many times.
hints[vlrSrc].push(Hint::SameAs(vlrDst, block_eef));
hints[vlrDst].push(Hint::SameAs(vlrSrc, block_eef));
vlrEquivClassesUF.union(vlrDst, vlrSrc);
is_vv_boundary_move[iix] = true;
// Reduce the total cost, and hence the spill cost, of
// both `vlrSrc` and `vlrDst`. This is so as to reduce to
// zero, the cost of a VLR whose only instructions are its
// v-v boundary copies.
debug!("QQQQ reduce cost of {:?} and {:?}", vlrSrc, vlrDst);
decVLRcosts.push((vlrSrc, vlrDst, 1 * block_eef));
}
}
(true, false) => {
// Check for a V <- R hint.
let rSrcR = rSrc.to_real_reg();
let rDstV = rDst.to_virtual_reg();
let mb_rlrSrc = doesRRegHaveXXat(/*xxIsLastUse=*/ true, rSrcR, iix);
let mb_vlrDst = doesVRegHaveXXat(/*xxIsLastUse=*/ false, rDstV, iix);
if mb_rlrSrc.is_some() && mb_vlrDst.is_some() {
let vlrDst = mb_vlrDst.unwrap();
hints[vlrDst].push(Hint::Exactly(rSrcR, block_eef));
}
}
(false, true) => {
// Check for a R <- V hint.
let rSrcV = rSrc.to_virtual_reg();
let rDstR = rDst.to_real_reg();
let mb_vlrSrc = doesVRegHaveXXat(/*xxIsLastUse=*/ true, rSrcV, iix);
let mb_rlrDst = doesRRegHaveXXat(/*xxIsLastUse=*/ false, rDstR, iix);
if mb_vlrSrc.is_some() && mb_rlrDst.is_some() {
let vlrSrc = mb_vlrSrc.unwrap();
hints[vlrSrc].push(Hint::Exactly(rDstR, block_eef));
}
}
(false, false) => {
// This is a real-to-real move. There's nothing we can do. Ignore it.
}
}
}
// Now decrease the `total_cost` and `spill_cost` fields of selected
// `VirtualRange`s, as detected by the previous loop. Don't decrease the
// `spill_cost` literally to zero; doing that causes various assertion
// failures and boundary problems later on, in the `CommitmentMap`s. In
// such a case, make the `spill_cost` be tiny but nonzero.
fn decrease_vlr_total_cost_by(vlr: &mut VirtualRange, decrease_total_cost_by: u32) {
// Adjust `total_cost`.
if vlr.total_cost < decrease_total_cost_by {
vlr.total_cost = 0;
} else {
vlr.total_cost -= decrease_total_cost_by;
}
// And recompute `spill_cost` accordingly.
if vlr.total_cost == 0 {
vlr.spill_cost = SpillCost::finite(1.0e-6);
} else {
assert!(vlr.size > 0);
vlr.spill_cost = SpillCost::finite(vlr.total_cost as f32 / vlr.size as f32);
}
}
for (vlrix1, vlrix2, decrease_total_cost_by) in decVLRcosts {
decrease_vlr_total_cost_by(&mut vlr_env[vlrix1], decrease_total_cost_by);
decrease_vlr_total_cost_by(&mut vlr_env[vlrix2], decrease_total_cost_by);
}
// For the convenience of the allocator core, sort the hints for each VLR so
// as to move the most preferred to the front.
for hints_for_one_vlr in hints.iter_mut() {
hints_for_one_vlr.sort_by(|h1, h2| h2.get_weight().partial_cmp(&h1.get_weight()).unwrap());
}
let vlrEquivClasses: UnionFindEquivClasses<VirtualRangeIx> =
vlrEquivClassesUF.get_equiv_classes();
if log_enabled!(Level::Debug) {
debug!("Revised VLRs:");
let mut n = 0;
for vlr in vlr_env.iter() {
debug!("{:<4?} {:?}", VirtualRangeIx::new(n), vlr);
n += 1;
}
debug!("Coalescing hints:");
n = 0;
for hints_for_one_vlr in hints.iter() {
let mut s = "".to_string();
for hint in hints_for_one_vlr {
s = s + &show_hint(hint, &univ) + &" ".to_string();
}
debug!(" hintsfor {:<4?} = {}", VirtualRangeIx::new(n), s);
n += 1;
}
for n in 0..vlr_env.len() {
let vlrix = VirtualRangeIx::new(n);
let mut tmpvec = vec![];
for elem in vlrEquivClasses.equiv_class_elems_iter(vlrix) {
tmpvec.reverse();
tmpvec.push(elem);
}
debug!(" eclassof {:?} = {:?}", vlrix, tmpvec);
}
for (b, i) in is_vv_boundary_move.iter().zip(0..) {
if *b {
debug!(" vv_boundary_move at {:?}", InstIx::new(i));
}
}
}
info!("do_coalescing_analysis: end");
info!("");
(
hints,
vlrEquivClasses,
is_vv_boundary_move,
vreg_to_vlrs_map,
)
}