1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
//! Rectangle packer packs small rectangles into a bigger one.
use crate::{Number, Rect};
use num_traits::Zero;
struct RectPackNode<T>
where
T: Number,
{
filled: bool,
split: bool,
bounds: Rect<T>,
left: usize,
right: usize,
}
impl<T> RectPackNode<T>
where
T: Number,
{
fn new(bounds: Rect<T>) -> Self {
Self {
bounds,
filled: false,
split: false,
left: usize::MAX,
right: usize::MAX,
}
}
}
/// Rectangle packer packs small rectangles into a bigger one.
pub struct RectPacker<T>
where
T: Number,
{
nodes: Vec<RectPackNode<T>>,
root: usize,
width: T,
height: T,
unvisited: Vec<usize>,
}
impl<T> RectPacker<T>
where
T: Number,
{
/// Creates new instance of the rectangle packer with given bounds.
///
/// # How to choose initial bounds
///
/// If you have a set of rectangles and you need to calculate average side length of a square,
/// then calculate total area of your triangles by sum of width*height and then take square
/// root out of area. You'll get side length of a square which can be used as width and height
/// parameters.
pub fn new(w: T, h: T) -> Self {
Self {
nodes: vec![RectPackNode::new(Rect::new(
Zero::zero(),
Zero::zero(),
w,
h,
))],
root: 0,
width: w,
height: h,
unvisited: Default::default(),
}
}
/// Clears packer and prepares it for another run. It is much cheaper than create new packer,
/// because it reuses previously allocated memory.
pub fn clear(&mut self) {
self.nodes.clear();
self.unvisited.clear();
self.nodes.push(RectPackNode::new(Rect::new(
Zero::zero(),
Zero::zero(),
self.width,
self.height,
)));
self.root = 0;
}
/// Tries to find free place to put rectangle with given size. Returns None if there insufficient
/// space.
pub fn find_free(&mut self, w: T, h: T) -> Option<Rect<T>> {
if self.unvisited.is_empty() {
self.unvisited.push(self.root);
}
while let Some(node_index) = self.unvisited.pop() {
let node = &mut self.nodes[node_index];
if node.split {
self.unvisited.push(node.right);
self.unvisited.push(node.left);
} else if !node.filled && node.bounds.w() >= w && node.bounds.h() >= h {
if node.bounds.w() == w && node.bounds.h() == h {
node.filled = true;
return Some(node.bounds);
}
// Split and continue
node.split = true;
let (left_bounds, right_bounds) = if node.bounds.w() - w > node.bounds.h() - h {
(
Rect::new(node.bounds.x(), node.bounds.y(), w, node.bounds.h()),
Rect::new(
node.bounds.x() + w,
node.bounds.y(),
node.bounds.w() - w,
node.bounds.h(),
),
)
} else {
(
Rect::new(node.bounds.x(), node.bounds.y(), node.bounds.w(), h),
Rect::new(
node.bounds.x(),
node.bounds.y() + h,
node.bounds.w(),
node.bounds.h() - h,
),
)
};
let left = self.nodes.len();
self.nodes.push(RectPackNode::new(left_bounds));
let right = self.nodes.len();
self.nodes.push(RectPackNode::new(right_bounds));
let node = &mut self.nodes[node_index];
node.left = left;
node.right = right;
self.unvisited.push(left);
}
}
None
}
}
#[cfg(test)]
mod test {
use super::{RectPackNode, RectPacker};
use crate::Rect;
#[test]
fn rect_pack_node_new() {
let rect = Rect::new(0.0, 0.0, 1.0, 1.0);
let node = RectPackNode::new(rect);
assert!(!node.filled);
assert!(!node.split);
assert_eq!(node.bounds, rect);
assert_eq!(node.left, usize::MAX);
assert_eq!(node.right, usize::MAX);
}
#[test]
fn rect_packer_new() {
let rp = RectPacker::new(1.0, 1.0);
assert_eq!(rp.width, 1.0);
assert_eq!(rp.height, 1.0);
assert_eq!(rp.unvisited, vec![]);
}
#[test]
fn rect_packer_find_free() {
let mut rp = RectPacker::new(10.0, 10.0);
assert_eq!(rp.find_free(20.0, 20.0), None);
assert_eq!(rp.find_free(1.0, 1.0), Some(Rect::new(0.0, 0.0, 1.0, 1.0)));
assert_eq!(rp.find_free(9.0, 9.0), Some(Rect::new(0.0, 1.0, 9.0, 9.0)));
}
#[test]
fn rect_packer_clear() {
let mut rp = RectPacker::new(10.0, 10.0);
rp.find_free(1.0, 1.0);
rp.find_free(9.0, 9.0);
assert_eq!(rp.nodes.len(), 7);
rp.clear();
assert_eq!(rp.nodes.len(), 1);
}
}