1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
//! The stack runtime
//!
//! A runtime for turning recursive functions into a number of futures which are run from a single
//! flattened loop, preventing stack overflows.
//!
//! This runtime also has support for external async function but it explicitly doesn't support
//! intra-task concurrency, i.e. calling select or join on multiple futures at the same time. These
//! types of patterns break the stack allocation pattern which this executor uses to be able to
//! allocate and run futures efficiently.
use crate::{defer::Defer, stub_ctx};
use pin_project_lite::pin_project;
use std::{
cell::{Cell, UnsafeCell},
future::Future,
marker::PhantomData,
pin::Pin,
ptr::NonNull,
task::{Context, Poll},
};
mod stk;
#[cfg(feature = "tree")]
pub(crate) use stk::{InnerStkFuture, StackMarker};
pub use stk::{Stk, StkFuture, YieldFuture};
mod task;
use task::StackTasks;
#[cfg(test)]
mod test;
pin_project! {
/// Future returned by [`Runner::finish_async`]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct FinishFuture<'a,R>{
runner: Runner<'a,R>
}
}
impl<'a, R> Future for FinishFuture<'a, R> {
type Output = R;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
enter_stack_context(self.runner.ptr, || {
let this = self.project();
unsafe {
let tasks = &this.runner.ptr.tasks;
loop {
let Some(mut task) = tasks.last() else {
panic!("Tasks empty")
};
loop {
let defer = Defer::new(tasks, |tasks| tasks.pop());
match task.drive(cx) {
Poll::Pending => {
defer.take();
match this.runner.stack_state() {
State::Base => return Poll::Pending,
State::NewTask => {
// New task was pushed so we need to start driving that task.
this.runner.set_stack_state(State::Base);
break;
}
State::Yield => {
// Yield was requested but no new task was pushed so continue.
this.runner.set_stack_state(State::Base);
}
State::Cancelled => {
unreachable!("Stack being dropped while actively driven")
}
}
}
Poll::Ready(_) => {
std::mem::drop(defer);
if tasks.is_empty() {
let value = (*this.runner.place.as_ref().get()).take().unwrap();
return Poll::Ready(value);
}
break;
}
}
}
}
}
})
}
}
pin_project! {
/// Future returned by [`Runner::step_async`]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct StepFuture<'a,'b,R>{
runner: &'a mut Runner<'b,R>
}
}
impl<'a, 'b, R> Future for StepFuture<'a, 'b, R> {
type Output = Option<R>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
enter_stack_context(self.runner.ptr, || {
let this = self.project();
unsafe {
match this.runner.ptr.drive_head(cx) {
Poll::Pending => {
match this.runner.ptr.get_state() {
State::Base => {
// A poll::pending was returned but no new task was created.
// Thus we are waiting on an external future, and need to return
// Poll::pending.
return Poll::Pending;
}
State::Cancelled => {
unreachable!("Stack being dropped while actively driven")
}
State::NewTask => {
// Poll::Pending was returned and a new future was created, therefore
// we need to continue evaluating tasks so return Poll::Ready
Poll::Ready(None)
}
State::Yield => {
// Poll::Pending was returned and with a request to interrupt execution
// so return ready
Poll::Ready(None)
}
}
}
Poll::Ready(_) => {
if this.runner.ptr.tasks().is_empty() {
return Poll::Ready(Some(
(*this.runner.place.as_ref().get()).take().unwrap(),
));
}
Poll::Ready(None)
}
}
}
})
}
}
/// Struct returned by [`Stack::enter`] determines how futures should be ran.
pub struct Runner<'a, R> {
place: NonNull<UnsafeCell<Option<R>>>,
ptr: &'a Stack,
_stack_marker: PhantomData<&'a mut Stack>,
_res_marker: PhantomData<R>,
}
unsafe impl<'a, R> Send for Runner<'a, R> {}
unsafe impl<'a, R> Sync for Runner<'a, R> {}
impl<'a, R> Runner<'a, R> {
fn stack_state(&self) -> State {
self.ptr.get_state()
}
fn set_stack_state(&self, state: State) {
self.ptr.set_state(state)
}
/// Drive the stack until it completes.
///
/// # Panics
///
/// This function will panic if the waker inside the future running on the stack either tries
/// to clone the waker or tries to call wake. This function is not meant to used with any other
/// future except those generated with the various function provided by the stack. For the
/// async version see [`Runner::finish_async`]
pub fn finish(mut self) -> R {
unsafe { self.finish_inner() }
}
unsafe fn finish_inner(&mut self) -> R {
enter_stack_context(self.ptr, || {
let waker = stub_ctx::get();
let mut context = Context::from_waker(&waker);
while let Some(mut task) = self.ptr.tasks.last() {
loop {
let this = Defer::new(self.ptr, |this| {
this.tasks.pop();
});
match task.drive(&mut context) {
Poll::Pending => {
this.take();
match self.stack_state() {
State::Yield => {
self.set_stack_state(State::Base);
}
State::Base => {}
State::NewTask => {
self.set_stack_state(State::Base);
break;
}
State::Cancelled => {
unreachable!("Stack being dropped while actively driven.")
}
}
}
Poll::Ready(_) => {
break;
}
}
}
}
(*self.place.as_ref().get()).take().unwrap()
})
}
/// Run the spawned future for a single step, returning none if a future either completed or
/// spawned a new future onto the stack. Will return some if the root future is finished.
///
/// # Panics
///
/// This function will panic if the waker inside the future running on the stack either tries
/// to clone the waker or tries to call wake. This function is not meant to used with any other
/// future except those generated with the various function provided by the stack. For the
/// async version see [`Runner::step_async`]
pub fn step(&mut self) -> Option<R> {
enter_stack_context(self.ptr, || {
unsafe {
let waker = stub_ctx::get();
let mut context = Context::from_waker(&waker);
match self.ptr.drive_head(&mut context) {
Poll::Pending => match self.stack_state() {
State::Base => {}
State::Yield | State::NewTask => {
self.set_stack_state(State::Base);
}
State::Cancelled => unreachable!("Stack dropped while being stepped"),
},
Poll::Ready(_) => {
if self.ptr.tasks.len() == 0 {
return Some((*self.place.as_ref().get()).take().unwrap());
}
}
}
}
None
})
}
/// Run the spawned future for a single step, returning none if a future either completed or
/// spawned a new future onto the stack. Will return some if the root future is finished.
///
/// This function supports sleeping or taking ownership of the waker allowing it to be used
/// with external async runtimes.
pub fn step_async<'b>(&'b mut self) -> StepFuture<'b, 'a, R> {
StepFuture { runner: self }
}
/// Returns the number of futures currently spawned on the stack.
pub fn depth(&self) -> usize {
self.ptr.tasks.len()
}
/// Drive the stack until it completes.
///
/// This function supports cloning and awakening allowing it to be used with external async
/// runtimes
pub fn finish_async(self) -> FinishFuture<'a, R> {
FinishFuture { runner: self }
}
}
impl<'a, R> Drop for Runner<'a, R> {
fn drop(&mut self) {
self.ptr.clear();
unsafe { std::mem::drop(Box::from_raw(self.place.as_ptr())) };
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum State {
/// normal execution of the stack.
Base,
/// A new task was pushed to the Stack
/// the current running future should yield back to the stack to continue executing the current
/// future.
NewTask,
/// Yielding was requested by a future.
Yield,
/// State used when the stack is being dropped and all the futures should be cancelledd.
Cancelled,
}
thread_local! {
static STACK_PTR: Cell<Option<NonNull<Stack>>> = const { Cell::new(None) };
}
pub(crate) fn enter_stack_context<F, R>(context: &Stack, f: F) -> R
where
F: FnOnce() -> R,
{
let ptr = STACK_PTR.with(|x| x.replace(Some(NonNull::from(context))));
struct Dropper(Option<NonNull<Stack>>);
impl Drop for Dropper {
fn drop(&mut self) {
STACK_PTR.with(|x| x.set(self.0))
}
}
let _dropper = Dropper(ptr);
f()
}
pub(crate) fn with_stack_context<F, R>(f: F) -> R
where
F: FnOnce(&Stack) -> R,
{
let ptr = STACK_PTR
.with(|x| x.get())
.expect("Not within a stack context");
unsafe { f(ptr.as_ref()) }
}
/// A small minimal runtime for executing futures flattened onto the heap preventing stack
/// overflows on deeply nested futures. Only capable of running a single future at the same time
/// and has no support for waking tasks by itself.
pub struct Stack {
state: Cell<State>,
tasks: StackTasks,
}
unsafe impl Send for Stack {}
unsafe impl Sync for Stack {}
impl Stack {
/// Create a new empty stack to run reblessive futures in.
///
/// This function does not allocate.
pub fn new() -> Self {
Stack {
state: Cell::new(State::Base),
tasks: StackTasks::new(),
}
}
/// Create a new empty stack to run reblessive futures in with atleast cap bytes reserved for
/// future allocation.
pub fn with_capacity(cap: usize) -> Self {
Stack {
state: Cell::new(State::Base),
tasks: StackTasks::with_capacity(cap),
}
}
/// Run a future in the stack.
pub fn enter<'a, F, Fut, R>(&'a mut self, f: F) -> Runner<'a, R>
where
F: FnOnce(&'a mut Stk) -> Fut,
Fut: Future<Output = R> + 'a,
{
assert!(
self.tasks.is_empty(),
"Stack left in inconsistent state, was a previous runner leaked?"
);
unsafe {
let ctx = Stk::new();
let place = Box::new(UnsafeCell::new(None));
let place_ptr = NonNull::new_unchecked(Box::into_raw(place));
let fut = (f)(ctx);
self.tasks.push(async move {
place_ptr.as_ref().get().write(Some(fut.await));
});
Runner {
place: place_ptr,
ptr: self,
_stack_marker: PhantomData,
_res_marker: PhantomData,
}
}
}
pub(crate) fn drive_head(&self, cx: &mut Context) -> Poll<()> {
let this = Defer::new(self, |this| unsafe {
// Ensure that if the task panics it is being dropped
this.tasks().pop();
});
let Some(mut task) = this.tasks.last() else {
panic!("Missing tasks");
};
match unsafe { task.drive(cx) } {
Poll::Pending => {
this.take();
Poll::Pending
}
Poll::Ready(_) => Poll::Ready(()),
}
}
pub(crate) fn tasks(&self) -> &StackTasks {
&self.tasks
}
pub(crate) fn get_state(&self) -> State {
self.state.get()
}
pub(crate) fn set_state(&self, state: State) {
self.state.set(state)
}
pub(crate) fn clear(&self) {
self.set_state(State::Cancelled);
enter_stack_context(self, || self.tasks.clear());
self.set_state(State::Base);
}
}
impl Default for Stack {
fn default() -> Self {
Self::new()
}
}
impl Drop for Stack {
fn drop(&mut self) {
self.set_state(State::Cancelled);
enter_stack_context(self, || self.tasks().clear())
}
}