<div align="center">
<img src="https://raw.githubusercontent.com/ReasonKit/reasonkit-core/main/brand/banners/hero-tree.png" alt="ReasonKit Mem" width="100%" style="border-radius: 12px;">
# ReasonKit Mem
**Memory & Retrieval Infrastructure for ReasonKit**
[](https://crates.io/crates/reasonkit-mem)
[](https://docs.rs/reasonkit-mem)
[](LICENSE)
[](https://www.rust-lang.org/)
_The Long-Term Memory Layer ("Hippocampus") for AI Reasoning_
</div>
---
**ReasonKit Mem** is the memory layer ("Hippocampus") for ReasonKit. It provides vector storage, hybrid search, RAPTOR trees, and embedding support.
## Features
- **Vector Storage** - Qdrant-based dense vector storage with embedded mode
- **Hybrid Search** - Dense (Qdrant) + Sparse (Tantivy BM25) fusion
- **RAPTOR Trees** - Hierarchical retrieval for long-form QA
- **Embeddings** - Local (BGE-M3) and remote (OpenAI) embedding support
- **Reranking** - Cross-encoder reranking for precision
## Installation
Add to your `Cargo.toml`:
```toml
[dependencies]
reasonkit-mem = "0.1"
tokio = { version = "1", features = ["full"] }
```
## Usage
### Basic Usage (Embedded Mode)
```rust
use reasonkit_mem::storage::Storage;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
// Create embedded storage (automatic file storage fallback)
let storage = Storage::new_embedded().await?;
// Use storage...
Ok(())
}
```
### Advanced Usage (Custom Configuration)
```rust
use reasonkit_mem::{
storage::{Storage, EmbeddedStorageConfig},
embedding::EmbeddingProvider,
retrieval::HybridRetriever,
Document, RetrievalConfig,
};
use std::path::PathBuf;
#[tokio::main]
async fn main() -> anyhow::Result<()> {
// Create storage with custom config
let config = EmbeddedStorageConfig::file_only(PathBuf::from("./data"));
let storage = Storage::new_embedded_with_config(config).await?;
// Or use Qdrant (requires running server)
let qdrant_config = EmbeddedStorageConfig::with_qdrant(
"http://localhost:6333",
"my_collection",
1536,
);
let storage = Storage::new_embedded_with_config(qdrant_config).await?;
// Index documents
storage.store_document(&doc, &context).await?;
// Hybrid search
let retriever = HybridRetriever::new(storage.clone());
let results = retriever.search("query", &RetrievalConfig::default()).await?;
Ok(())
}
```
### Embedded Mode Documentation
For detailed information about embedded mode, see [docs/EMBEDDED_MODE_GUIDE.md](docs/EMBEDDED_MODE_GUIDE.md).
## Architecture
<div align="center">
```
+---------------------------------------------------------------------+
| |
| Query --+---> [Dense Encoder] ---> Qdrant ANN ---> Top-K Dense |
| | |
| +---> [BM25 Tokenizer] ---> Tantivy ---> Top-K Sparse |
| |
| v |
| +----------------------+ |
| | Reciprocal Rank Fusion| |
| +----------+-----------+ |
| v |
| +----------------------+ |
| | Cross-Encoder Rerank | |
| +----------+-----------+ |
| v |
| Final Results |
+---------------------------------------------------------------------+
```
</div>
## Technology Stack
| **Qdrant** | qdrant-client 1.10+ | Dense vector storage |
| **Tantivy** | tantivy 0.22+ | BM25 sparse search |
| **RAPTOR** | Custom Rust | Hierarchical retrieval |
| **Embeddings** | BGE-M3 / OpenAI | Dense representations |
| **Reranking** | Cross-encoder | Final precision boost |
## Project Structure
```
reasonkit-mem/
├── src/
│ ├── storage/ # Qdrant vector + file-based storage
│ ├── embedding/ # Dense vector embeddings
│ ├── retrieval/ # Hybrid search, fusion, reranking
│ ├── raptor/ # RAPTOR hierarchical tree structure
│ ├── indexing/ # BM25/Tantivy sparse indexing
│ └── rag/ # RAG pipeline orchestration
├── benches/ # Performance benchmarks
├── examples/ # Usage examples
├── docs/ # Additional documentation
└── Cargo.toml
```
## Feature Flags
| `default` | Core functionality |
| `python` | Python bindings via PyO3 |
| `local-embeddings` | Local BGE-M3 embeddings via ONNX Runtime |
## License
Apache License 2.0 - see [LICENSE](LICENSE)
---
<div align="center">
**Part of the ReasonKit Ecosystem**
_"See How Your AI Thinks"_
</div>