1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
//! Types for storing and exploring trees.

#![deny(missing_docs)]

/// An error returned when attempting to build a [`Sapling`]`<T>`.
///
/// The error contains the sapling that failed to build in order to return it to
/// the caller. Otherwise the [`build`] function would drop the sapling without
/// returning a resulting [`Tree`]`<T>`.
///
/// [`build`]: Sapling::build
pub enum BuildError<T> {
    /// The sapling is incomplete and not ready to be built.
    ///
    /// It is either empty or there are still unclosed nodes. Use [`pop_all`] to
    /// close any unclosed nodes and use [`is_empty`] to check if th sapling is
    /// empty.
    ///
    /// [`is_empty`]: Sapling::is_empty
    /// [`pop_all`]: Sapling::pop_all
    Incomplete(Sapling<T>),

    /// The sapling contains more than one root node.
    ///
    /// When creating nodes on a sapling it is possible to [`pop`] the root node
    /// and [`push`] a second root. Trees however must have a unique root.
    ///
    /// To get an iterator over the root nodes build the sapling into a
    /// [`PolyTree`]`<T>` using [`build_polytree`].
    ///
    /// [`build_polytree`]: Sapling::build_polytree
    /// [`pop`]: Sapling::pop
    /// [`push`]: Sapling::push
    MultipleRoots(Sapling<T>),
}

impl<T> std::fmt::Debug for BuildError<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            Self::Incomplete(_) => write!(f, "Incomplete"),
            Self::MultipleRoots(_) => write!(f, "MultipleRoots"),
        }
    }
}

impl<T> std::fmt::Display for BuildError<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            Self::Incomplete(_) => write!(f, "Incomplete tree structure"),
            Self::MultipleRoots(_) => write!(f, "Multiple roots in tree"),
        }
    }
}

impl<T> std::error::Error for BuildError<T> {}

/// An error returned when validating a vertex slice.
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum ValidationError {
    /// The vertex slice is empty.
    ///
    /// Nodes must always have exactly one root. The buffer therefor needs to
    /// have at least one entry.
    Empty,

    /// The vertex slice contains more than one root node.
    ///
    /// Nodes can only have exactly one root node.
    MultipleRoots,

    /// Some of the lengths of the vertices do not match up. Ensure a vertex
    /// does not have more descendants than its ancestors.
    IllegalStructure,
}

impl std::fmt::Display for ValidationError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            Self::Empty => write!(f, "Empty vertex slice"),
            Self::MultipleRoots => write!(f, "Multiple roots in vertex slice"),
            Self::IllegalStructure => write!(f, "Vertex with invalid length"),
        }
    }
}

impl std::error::Error for ValidationError {}

/// An internal type that stores the payload and relationships of a node in a
/// [`Tree`]`<T>` or [`PolyTree`]`<T>`.
///
/// Every node on the tree is represented by a [`Vertex`]`<T>`. The `len` field
/// stores the number of descendants the node has; this is the number of nodes
/// in the subtree below the node. A leaf node has length `0`.
///
/// Every [`Tree`]`<T>` contains a [`Vec`]`<`[`Vertex`]`<T>>` representing the
/// trees nodes in a depth first order; meaning every vertex is followed by its
/// first child. This makes it very easy to take a slice of the vertex buffer
/// that represents a subtree. We expose such a slice to the user as a
/// [`Node`]`<T>`.
///
/// The type implements [`Clone`] and [`Copy`] as long as the payload `T`
/// implements the same. Supporting [`Copy`] is important to ensure
/// [`Vec::extend_from_slice`] executes as fast as possible. This method is used
/// by [`Sapling::push_tree`] to copy the nodes of a tree into another sapling.
#[derive(Debug, Clone, Copy)]
pub struct Vertex<T> {
    len: usize,
    data: T,
}

impl<T> Vertex<T> {
    /// Returns a new vertex with payload `data` intending to own `len` many
    /// descendants.
    pub fn new(data: T, len: usize) -> Self {
        Vertex { data, len }
    }
}

/// A builder to construct [`Tree`]`<T>`s and [`PolyTree`]`<T>`s.
///
/// Saplings are the only way of creating a [`Tree`]`<T>`. New saplings are
/// initialized empty, containing no nodes. Nodes are then added to the sapling
/// until the tree is complete. The sapling can then be turned into a tree.
///
/// Nodes are added to saplings using [`push`]. Adding a new node also selects
/// it, meaning later calls of [`push`] will attach the new node as a child to
/// this one. To close a node once all its child nodes have been added, call
/// [`pop`].
///
/// When the sapling is complete, turn it into a [`Tree`]`<T>` using [`build`].
/// This method returns a [`Result`]`<`[`Tree`]`<T>, `[`BuildError`]`<T>>` to
/// indicate if the sapling was built successfully. In case of an error
/// [`BuildError`]`<T>` will contain the sapling.
///
/// # Examples
///
/// ```rust
/// use read_tree::{Sapling, Tree};
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let mut sap = Sapling::new();
///     assert!(sap.is_empty());
///
///     sap.push(1); // Add a new node to the tree carrying the payload `1`.
///     sap.push_leaf(11); // Add a child node to node `1`. This node will have no children.
///     sap.push(12); // Add another child node to `1`. Select this node.
///     sap.push_leaf(121); // Add leaf nodes to node `12`.
///     sap.push_leaf(122);
///
///     sap.pop(); // Close node `12`.
///     sap.pop(); // Close node `1`.
///
///     assert!(sap.is_ready());
///     let _tree = sap.build()?;
///
///     Ok(())
/// }
/// ```
///
/// [`build`]: Sapling::build
/// [`pop`]: Sapling::pop
/// [`push`]: Sapling::push
#[derive(Debug)]
pub struct Sapling<T> {
    path: Vec<usize>,
    verts: Vec<Vertex<T>>,
}

impl<T> Sapling<T> {
    /// Creates a new empty sapling.
    ///
    /// An empty sapling is not yet ready to be built. Add at least one node
    /// before building it into a tree.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let sap = Sapling::<usize>::new();
    /// assert!(sap.is_empty());
    /// assert!(sap.build().is_err());
    /// ```
    pub fn new() -> Self {
        Sapling {
            path: Vec::new(),
            verts: Vec::new(),
        }
    }

    /// Creates a new empty sapling with enough capacity to store `len` many
    /// nodes.
    ///
    /// The sapling is allowed to receive more than `len` nodes; this may
    /// however cause further memory allocations. For more information check out
    /// [`Vec::with_capacity`].
    ///
    /// The optional parameter `depth` should predict the maximum depth of the
    /// tree. If the depth is unknown use `None`. The depth should include the
    /// root node, can however exclude leaf nodes, if the leaf nodes will be
    /// added using [`push_leaf`]. The rule is that every call to [`push`]
    /// increases the depth, and every call to [`pop`] decreases it. Empty
    /// saplings start with depth `0` and methods like [`push_leaf`] do not
    /// affect the depth. If omitted `0` will be used by default.
    ///
    /// [`pop`]: Sapling::pop
    /// [`push_leaf`]: Sapling::push_leaf
    /// [`push`]: Sapling::push
    pub fn with_capacity(len: usize, depth: Option<usize>) -> Self {
        Sapling {
            path: Vec::with_capacity(depth.unwrap_or(0)),
            verts: Vec::with_capacity(len),
        }
    }

    /// Adds a new node with the payload `data` to the sapling.
    ///
    /// The new node is positioned as a child node of the currently selected
    /// node. The selected node will be changed to be the new node until the
    /// next call of [`pop`]. To avoid changing the selection use [`push_leaf`]
    /// instead; note that this will make it impossible to attach child nodes to
    /// the node, forcing it to be a leaf node.
    ///
    /// Nodes have to be added to the sapling in the correct oder. Once a node
    /// has been closed using [`pop`] its subtree is finalized and can no longer
    /// be changed.
    ///
    /// [`pop`]: Sapling::pop
    /// [`push_leaf`]: Sapling::push_leaf
    /// [`push`]: Sapling::push
    pub fn push(&mut self, data: T) {
        self.path.push(self.verts.len());
        self.verts.push(Vertex { len: 0, data });
    }

    /// Adds a new leaf node with the payload `data` to the sapling.
    ///
    /// This method is a convenient shortcut that behaves the same as calling
    /// [`push`] immediately followed by [`pop`].
    ///
    /// [`pop`]: Sapling::pop
    /// [`push`]: Sapling::push
    pub fn push_leaf(&mut self, data: T) {
        self.verts.push(Vertex { len: 0, data });
    }

    /// Adds another tree to the selected node in the sapling. This operation
    /// does not change the selected node, similar to [`push_leaf`].
    ///
    /// Empties `tree` in the process and returns it as an empty sapling. This
    /// allows the caller to reuse the trees internal buffers.
    ///
    /// [`push_leaf`]: Sapling::push_leaf
    pub fn push_tree(&mut self, tree: Tree<T>) -> Sapling<T> {
        let mut sap = tree.into_sapling();
        self.verts.append(&mut sap.verts);
        sap.clear();
        sap
    }

    /// Adds another poly-tree to the selected node in the sapling. This
    /// operation does not change the selected node, similar to [`push_leaf`].
    ///
    /// Empties `tree` in the process and returns it as an empty sapling. This
    /// allows the caller to reuse the trees internal buffers.
    ///
    /// [`push_leaf`]: Sapling::push_leaf
    pub fn push_polytree(&mut self, tree: PolyTree<T>) -> Sapling<T> {
        let mut sap = tree.into_sapling();
        self.verts.append(&mut sap.verts);
        sap.clear();
        sap
    }

    /// Clones the contents of a node and attaches the cloned subtree to the
    /// sapling. Requires the payload type `T` to be [`Clone`].
    ///
    /// If `T` implements [`Copy`], the cloning of the subtree is relatively
    /// cheap. See [`Vec::extend_from_slice`] for more information.
    pub fn push_node(&mut self, node: Node<T>)
    where
        T: Clone,
    {
        self.verts.extend_from_slice(node.verts);
    }

    /// Returns a reference to the payload of the selected node. Returns `None`
    /// if no node is currently selected; this happens when the sapling is empty
    /// or after a root node was closed.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let mut sap = Sapling::new();
    /// sap.push(0);
    /// sap.push(1);
    ///
    /// assert_eq!(sap.peek(), Some(&1));
    /// assert_eq!(sap.pop(), Some(&1));
    ///
    /// assert_eq!(sap.peek(), Some(&0));
    /// assert_eq!(sap.pop(), Some(&0));
    ///
    /// assert_eq!(sap.peek(), None);
    /// assert_eq!(sap.pop(), None);
    /// ```
    pub fn peek(&self) -> Option<&T> {
        let i = *self.path.last()?;
        Some(&self.verts[i].data)
    }

    /// Closes the selected node.
    ///
    /// The subtree under the selected node is complete and will be closed. From
    /// then on new nodes will be attached to the parent of the closed node.
    ///
    /// Returns a reference to the payload of the closed node. Returns `None` if
    /// no node was selected; this happens when the sapling is empty or after a
    /// root node has been closed.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let mut sap = Sapling::new();
    /// sap.push(0);
    /// assert_eq!(sap.pop(), Some(&0));
    ///
    /// assert!(sap.is_ready());
    /// ```
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let mut sap = Sapling::<usize>::new();
    /// assert_eq!(sap.pop(), None);
    /// ```
    pub fn pop(&mut self) -> Option<&T> {
        let i = self.path.pop()?;
        self.verts[i].len = self.verts.len() - i - 1;
        Some(&self.verts[i].data)
    }

    /// Closes all open nodes.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let mut sap = Sapling::new();
    /// sap.push(0);
    /// sap.push(1);
    /// sap.push(2);
    /// sap.pop_all();
    ///
    /// assert!(sap.is_ready());
    /// ```
    pub fn pop_all(&mut self) {
        while let Some(i) = self.path.pop() {
            self.verts[i].len = self.verts.len() - i - 1;
        }
    }

    /// Closes the current node and makes it a leaf node.
    ///
    /// Any nodes that were attached to the node will be attached to its parent
    /// instead.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let mut sap = Sapling::new();
    /// sap.push(0);
    /// sap.push(1);
    /// sap.push_leaf(2);
    ///
    /// // make `1` a leaf node; changing `2` to be a child of `0`
    /// sap.pop_as_leaf();
    /// sap.pop();
    ///
    /// let tree = sap.build().unwrap();
    /// let mut iter = tree.as_node().children();
    ///
    /// assert_eq!(iter.next().unwrap().data(), &1);
    /// assert_eq!(iter.next().unwrap().data(), &2);
    /// assert!(iter.next().is_none());
    /// ```
    pub fn pop_as_leaf(&mut self) -> Option<&T> {
        let i = self.path.pop()?;
        Some(&self.verts[i].data)
    }

    /// Closes all open nodes and makes them all leaf nodes.
    ///
    /// If there are open nodes in the sapling, this will create multiple root
    /// nodes.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::{BuildError, Sapling};
    ///
    /// let mut sap = Sapling::new();
    /// sap.push(0);
    /// sap.push(1);
    ///
    /// sap.pop_as_leaf_all();
    /// match sap.build().unwrap_err() {
    ///     BuildError::MultipleRoots(_) => (),
    ///     _ => panic!(),
    /// }
    /// ```
    pub fn pop_as_leaf_all(&mut self) {
        self.path.clear();
    }

    /// Removes all nodes from the sapling, making it empty.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use read_tree::Sapling;
    ///
    /// let mut sap = Sapling::new();
    /// sap.push_leaf(0);
    /// assert_eq!(sap.is_empty(), false);
    ///
    /// sap.clear();
    /// assert_eq!(sap.is_empty(), true);
    /// ```
    pub fn clear(&mut self) {
        self.path.clear();
        self.verts.clear();
    }

    /// Returns `true` if the sapling contains no nodes. Use [`push`] to add
    /// nodes.
    ///
    /// [`push`]: Sapling::push
    pub fn is_empty(&self) -> bool {
        self.verts.is_empty()
    }

    /// Return `true` if the sapling is ready to be built.
    ///
    /// Verifies that the sapling is not empty and has no open nodes. It does
    /// not verify the number of root nodes of the sapling. Building into a
    /// [`Tree`]`<T>` may still fail because trees do not allow multiple root
    /// nodes.
    pub fn is_ready(&self) -> bool {
        self.path.is_empty() && !self.verts.is_empty()
    }

    /// Builds the sapling into a [`Tree`]`<T>`.
    ///
    /// Consumes the sapling in the process. Fails when the sapling is
    /// incomplete or has multiple roots. When failing to build the sapling, the
    /// sapling is returned unmodified with the [`BuildError`]`<T>`.
    pub fn build(self) -> Result<Tree<T>, BuildError<T>> {
        if !self.is_ready() {
            return Err(BuildError::Incomplete(self));
        }
        if self.verts[0].len < self.verts.len() - 1 {
            return Err(BuildError::MultipleRoots(self));
        }

        Ok(Tree {
            path: self.path,
            verts: self.verts,
        })
    }

    /// Builds the sapling into a [`PolyTree`]`<T>`.
    ///
    /// Consumes the sapling in the process. Fails when the sapling is
    /// incomplete. When failing to build the sapling, the sapling is returned
    /// unmodified with the [`BuildError`]`<T>`.
    pub fn build_polytree(self) -> Result<PolyTree<T>, BuildError<T>> {
        if !self.is_ready() {
            return Err(BuildError::Incomplete(self));
        }

        Ok(PolyTree {
            path: self.path,
            verts: self.verts,
        })
    }
}

impl<T> Default for Sapling<T> {
    fn default() -> Self {
        Self::new()
    }
}

/// A read-only tree data structure.
///
/// Trees are created from [`Sapling`]`<T>`s. Most interactions with trees
/// happen on slices of them called [`Node`]s. Get a node representing the
/// entire tree using [`as_node`].
///
/// [`as_node`]: Tree::as_node
#[derive(Debug)]
pub struct Tree<T> {
    /// Unused buffer.
    ///
    /// The buffer was used by the sapling that was used to construct the tree.
    /// It is kept in case the tree is turned back into a sapling.
    path: Vec<usize>,
    verts: Vec<Vertex<T>>,
}

#[allow(clippy::len_without_is_empty)]
impl<T> Tree<T> {
    /// Returns the unique root node of the tree representing the entire tree.
    ///
    /// You can think of this as taking the complete slice of the tree similar
    /// to `&vec[..]` for a [`Vec`]`<T>`.
    pub fn as_node(&self) -> Node<T> {
        Node {
            rank: 0,
            verts: &self.verts[..],
        }
    }

    /// Returns the node with the specified `rank`.
    pub fn get(&self, rank: usize) -> Option<Node<T>> {
        if rank >= self.verts.len() {
            return None;
        }

        Some(Node {
            rank,
            verts: &self.verts[..],
        })
    }

    /// Returns the number of nodes in the tree.
    ///
    /// Because trees are required to have exactly one root node, the length
    /// will always be at least `1`.
    pub fn len(&self) -> usize {
        self.verts.len()
    }

    /// Turns the tree back into a sapling. No nodes are removed from the
    /// tree; building the returned sapling will result in the original tree.
    ///
    /// All internal buffers are reused, making this a cheap operation. The only
    /// cost of converting [`Sapling`]`<T>`s and [`Tree`]`<T>`s back and forth
    /// is the validation that occurs during [`build`].
    ///
    /// [`build`]: Sapling::build
    pub fn into_sapling(self) -> Sapling<T> {
        Sapling {
            path: self.path,
            verts: self.verts,
        }
    }
}

/// A read-only poly-tree data structure.
///
/// Similar to [`Tree`]`<T>` but allows multiple root nodes.
#[derive(Debug)]
pub struct PolyTree<T> {
    path: Vec<usize>,
    verts: Vec<Vertex<T>>,
}

#[allow(clippy::len_without_is_empty)]
impl<T> PolyTree<T> {
    /// Returns an iterator over the root nodes of the poly-tree.
    pub fn roots(&self) -> Children<T> {
        Children {
            top: 0,
            bottom: self.verts.len(),
            verts: &self.verts[..],
        }
    }

    /// Returns the node with the specified `rank`.
    pub fn get(&self, rank: usize) -> Option<Node<T>> {
        if rank >= self.verts.len() {
            return None;
        }

        Some(Node {
            rank,
            verts: &self.verts[..],
        })
    }

    /// Returns the number of nodes in the poly-tree.
    ///
    /// Because poly-trees are required to not be empty, the length will always
    /// be at least `1`.
    pub fn len(&self) -> usize {
        self.verts.len()
    }

    /// Turns the poly-tree back into a sapling. No nodes are removed from the
    /// tree; building the returned sapling will result in the original
    /// poly-tree.
    ///
    /// All internal buffers are reused, making this a cheap operation. The only
    /// cost of converting [`Sapling`]`<T>`s and [`PolyTree`]`<T>`s back and
    /// forth is the validation that occurs during [`build_polytree`].
    ///
    /// [`build_polytree`]: Sapling::build_polytree
    pub fn into_sapling(self) -> Sapling<T> {
        Sapling {
            path: self.path,
            verts: self.verts,
        }
    }
}

/// A slice of a [`Tree`]`<T>` or [`PolyTree`]`<T>`.
///
/// A node is essentially the same as a tree, except it does not own its data.
///
/// Navigating the subtree of a node is done using iterators.
///
/// *It is planned to add a query type that allows querying nodes from subtrees
/// using chains of conditions. Currently only some basic iterators are
/// available.*
#[derive(Debug)]
pub struct Node<'a, T> {
    rank: usize,
    verts: &'a [Vertex<T>],
}

impl<'a, T> Node<'a, T> {
    /// Turns a slice of vertices into a [`Node`]`<T>`, after performing some
    /// validations.
    ///
    /// Returns an error in case of a failed validation. For the possible errors
    /// see [`ValidationError`]. For a more detailed description of the
    /// validation process see the safety section for [`from_unchecked`].
    ///
    /// To avoid running the validations; which have a significant cost for
    /// large trees; use the unsafe alternative [`from_unchecked`].
    ///
    /// [`from_unchecked`]: Node::from_unchecked
    pub fn from(verts: &[Vertex<T>]) -> Result<Node<T>, ValidationError> {
        if verts.is_empty() {
            return Err(ValidationError::Empty);
        }
        if verts[0].len != verts.len() - 1 {
            return Err(ValidationError::MultipleRoots);
        }

        let mut path = Vec::new();
        for (i, val) in verts.iter().enumerate() {
            while path.last() == Some(&i) {
                path.pop();
            }

            let scope = i + val.len + 1;
            if path.last().map(|head| *head < scope) == Some(true) {
                return Err(ValidationError::IllegalStructure);
            }
            path.push(scope);
        }

        Ok(Node { rank: 0, verts })
    }

    /// Returns a slice of vertices as a [`Node`]`<T>`.
    ///
    /// This is the unsafe alternative to [`from`] that skips all validations.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that all expected qualities of the vertex
    /// slice are fulfilled.
    ///
    /// 1. The vertex slice must not be empty.
    /// 2. The first vertex must span the entire slice.
    ///
    ///    This means that the `len` of the first vertex is equal to
    ///    `verts.len() - 1`.
    ///
    /// 3. The scope of all vertices must be contained within the scope of its
    ///    parent vertex
    ///
    ///    Here `scope` refers to the range starting from a nodes index to the
    ///    nodes index plus its `len` inclusive.
    ///
    /// [`from`]: Node::from
    pub unsafe fn from_unchecked(verts: &[Vertex<T>]) -> Node<T> {
        Node { rank: 0, verts }
    }

    /// Returns a reference to the payload of the node.
    pub fn data(self) -> &'a T {
        &self.verts[self.rank].data
    }

    /// Returns the rank of the node in the tree. The rank can be used to look
    /// up the node from the tree using [`get`].
    ///
    /// The rank also exposes information about the structure of the tree. Any
    /// node `child` with a rank greater than that of a node `parent` but not
    /// exceeding `parent.rank() + parent.len()` is a descendant of `parent`.
    ///
    /// [`get`]: Tree::get
    pub fn rank(self) -> usize {
        self.rank
    }

    /// Returns the number of descending nodes within the subtree of this node.
    /// A leaf node returns length `0`.
    pub fn len(self) -> usize {
        self.verts[self.rank].len
    }

    /// Returns `true` if the node has no child nodes.
    pub fn is_empty(self) -> bool {
        self.verts[self.rank].len == 0
    }

    /// Returns the node with the specified `rank`.
    ///
    /// The rank must be relative to the trees root, or the most recently pruned
    /// node. See [`isolated`] for more information.
    ///
    /// [`isolated`]: Node::isolated
    pub fn get(self, rank: usize) -> Option<Node<'a, T>> {
        if rank >= self.verts.len() {
            return None;
        }

        Some(Node {
            rank,
            verts: self.verts,
        })
    }

    /// Returns the parent of the node or `None` if it does not have one.
    pub fn parent(self) -> Option<Node<'a, T>> {
        self.ancestors().next()
    }

    /// Returns an iterator over the child nodes of the node. See [`Children`]
    /// for more information about the iterator.
    pub fn children(self) -> Children<'a, T> {
        Children::from(self)
    }

    /// Returns a depth first iterator of nodes. It iterates all nodes in the
    /// subtree of the node, including the node itself. See [`Descendants`] for
    /// more information about the iterator.
    pub fn descendants(self) -> Descendants<'a, T> {
        Descendants::from(self)
    }

    /// Returns an iterator over the parent nodes. The parent of the node is
    /// first. The root of the tree is last. See [`Ancestors`] for more
    /// information about the iterator.
    pub fn ancestors(self) -> Ancestors<'a, T> {
        Ancestors::from(self)
    }

    /// Returns the nodes internal vertex slice.
    pub fn as_slice(self) -> &'a [Vertex<T>] {
        self.verts
    }

    /// Returns the node isolated from the rest of the tree.
    ///
    /// An isolated node will always have rank `0`, and it will be impossible to
    /// access its ancestors. It is still possible to explore the subtree below
    /// the node.
    ///
    /// When getting nodes by rank you must get them from this or any descending
    /// node. If you use the rank in a node that is not affected by this
    /// isolation, it will return some other node. Think of the isolated node as
    /// an entirely new tree with its own ranking.
    pub fn isolated(self) -> Node<'a, T> {
        Node {
            rank: 0,
            verts: &self.verts[self.rank..=self.rank + self.verts[self.rank].len],
        }
    }

    /// Clones the contents of the node into a new [`Tree`]`<T>`.
    ///
    /// Similar to [`push_node`] this operation is cheaper if `T` implements
    /// [`Copy`]. It is internally based on [`Vec::extend_from_slice`].
    ///
    /// [`push_node`]: Sapling::push_node
    pub fn into_tree(self) -> Tree<T>
    where
        T: Clone,
    {
        let mut verts = Vec::new();
        verts.extend_from_slice(self.verts);

        Tree {
            path: Vec::new(),
            verts,
        }
    }
}

impl<'a, T> Copy for Node<'a, T> {}

impl<'a, T> Clone for Node<'a, T> {
    fn clone(&self) -> Self {
        *self
    }
}

/// Iterates the children of a node.
///
/// # Examples
///
/// ```rust
/// use read_tree::Sapling;
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let mut sap = Sapling::new();
///     sap.push(1);
///     sap.push_leaf(11);
///     sap.push(12);
///     sap.push_leaf(121);
///     sap.pop();
///     sap.pop();
///     let tree = sap.build()?;
///     let mut iter = tree.as_node().children();
///
///     assert_eq!(iter.next().unwrap().data(), &11);
///     assert_eq!(iter.next().unwrap().data(), &12);
///     assert!(iter.next().is_none());
///
///     Ok(())
/// }
/// ```
#[derive(Debug)]
pub struct Children<'a, T> {
    /// The next child node.
    top: usize,

    /// One beyond the last child node.
    bottom: usize,
    verts: &'a [Vertex<T>],
}

impl<'a, T> Children<'a, T> {
    /// Creates a new iterator over the children of a node.
    pub fn from(node: Node<'a, T>) -> Self {
        Children {
            top: node.rank() + 1,
            bottom: node.rank() + node.len() + 1,
            verts: node.verts,
        }
    }
}

impl<'a, T> Iterator for Children<'a, T> {
    type Item = Node<'a, T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.top >= self.bottom {
            return None;
        }

        let ret = Node {
            rank: self.top,
            verts: self.verts,
        };
        self.top += self.verts[self.top].len + 1;
        Some(ret)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.top >= self.bottom {
            (0, Some(0))
        } else {
            (1, Some(self.bottom - self.top))
        }
    }
}

/// Iterates all descendants of a node depth first.
///
/// The iterator implements [`ExactSizeIterator`] and [`DoubleEndedIterator`]
/// giving access to [`len`] and [`rev`]. It also has fast implementations for
/// [`nth`] and [`last`].
///
///
/// # Examples
///
/// ```rust
/// use read_tree::Sapling;
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let mut sap = Sapling::new();
///     sap.push(1);
///     sap.push(11);
///     sap.push_leaf(111);
///     sap.pop();
///     sap.push(12);
///     sap.push_leaf(121);
///     sap.pop();
///     sap.pop();
///     let tree = sap.build()?;
///     let mut iter = tree.as_node().descendants();
///
///     assert_eq!(iter.len(), 4);
///     assert_eq!(iter.next().unwrap().data(), &11);
///     assert_eq!(iter.next().unwrap().data(), &111);
///     assert_eq!(iter.next().unwrap().data(), &12);
///     assert_eq!(iter.next().unwrap().data(), &121);
///     assert!(iter.next().is_none());
///
///     Ok(())
/// }
/// ```
///
/// [`last`]: Iterator::last
/// [`len`]: ExactSizeIterator::len
/// [`nth`]: Iterator::nth
/// [`rev`]: Iterator::rev
#[derive(Debug)]
pub struct Descendants<'a, T> {
    /// The next node to yield from the top.
    top: usize,

    /// The previously yielded node from the bottom
    bottom: usize,
    verts: &'a [Vertex<T>],
}

impl<'a, T> Descendants<'a, T> {
    /// Creates a new iterator over the descendants of a node.
    pub fn from(node: Node<'a, T>) -> Self {
        Descendants {
            top: node.rank() + 1,
            bottom: node.rank() + node.len() + 1,
            verts: node.verts,
        }
    }
}

impl<'a, T> Iterator for Descendants<'a, T> {
    type Item = Node<'a, T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.top >= self.bottom {
            return None;
        }

        let ret = Node {
            rank: self.top,
            verts: self.verts,
        };
        self.top += 1;
        Some(ret)
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.top += n;
        self.next()
    }

    fn last(mut self) -> Option<Self::Item> {
        self.next_back()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }

    fn count(self) -> usize {
        self.len()
    }
}

impl<'a, T> DoubleEndedIterator for Descendants<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        if self.top >= self.bottom {
            return None;
        }

        self.bottom -= 1;
        Some(Node {
            rank: self.bottom,
            verts: self.verts,
        })
    }
}

impl<'a, T> ExactSizeIterator for Descendants<'a, T> {
    fn len(&self) -> usize {
        self.bottom - self.top
    }
}

/// Iterates all ancestors of a node starting with the parent of the node.
///
/// The iterator implements [`DoubleEndedIterator`], allowing it to be reversed
/// using [`rev`].
///
/// [`rev`]: Iterator::rev
#[derive(Debug)]
pub struct Ancestors<'a, T> {
    /// The next potential top most ancestor.
    top: usize,

    /// The previously found bottom most ancestor.
    bottom: usize,
    verts: &'a [Vertex<T>],
}

impl<'a, T> Ancestors<'a, T> {
    /// Creates a new iterator over the ancestors of a node.
    pub fn from(node: Node<'a, T>) -> Self {
        Ancestors {
            top: 0,
            bottom: node.rank(),
            verts: node.verts,
        }
    }
}

impl<'a, T> Iterator for Ancestors<'a, T> {
    type Item = Node<'a, T>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.top >= self.bottom {
            return None;
        }

        for i in (self.top..self.bottom).rev() {
            if self.bottom <= i + self.verts[i].len {
                self.bottom = i;
                return Some(Node {
                    rank: i,
                    verts: self.verts,
                });
            }
        }

        None
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.top - self.bottom))
    }

    fn count(self) -> usize {
        // The reverse direction of the iterator can skip subtrees and should therefor
        // be faster for most trees.
        self.rev().count()
    }

    fn last(mut self) -> Option<Self::Item> {
        self.next_back()
    }
}

impl<'a, T> DoubleEndedIterator for Ancestors<'a, T> {
    fn next_back(&mut self) -> Option<Self::Item> {
        let mut i = self.top;
        while i < self.bottom {
            let len = self.verts[i].len;
            if i + len < self.bottom {
                i += len + 1;
            } else {
                self.top = i + 1;
                return Some(Node {
                    rank: i,
                    verts: self.verts,
                });
            }
        }

        None
    }
}