re_data_store 0.10.0

In-memory storage of Rerun log data, indexed for fast fast queries.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
use std::collections::BTreeMap;

use nohash_hasher::IntMap;

use re_arrow_store::{DataStoreConfig, GarbageCollectionOptions};
use re_log_types::{
    ApplicationId, ComponentPath, DataCell, DataRow, DataTable, EntityPath, EntityPathHash, LogMsg,
    PathOp, RowId, SetStoreInfo, StoreId, StoreInfo, StoreKind, TimePoint, Timeline,
};
use re_types_core::{components::InstanceKey, Loggable};

use crate::{Error, TimesPerTimeline};

// ----------------------------------------------------------------------------

/// Stored entities with easy indexing of the paths.
///
/// NOTE: don't go mutating the contents of this. Use the public functions instead.
pub struct EntityDb {
    /// In many places we just store the hashes, so we need a way to translate back.
    pub entity_path_from_hash: IntMap<EntityPathHash, EntityPath>,

    /// Used for time control
    pub times_per_timeline: TimesPerTimeline,

    /// A tree-view (split on path components) of the entities.
    pub tree: crate::EntityTree,

    /// Stores all components for all entities for all timelines.
    pub data_store: re_arrow_store::DataStore,
}

impl Default for EntityDb {
    fn default() -> Self {
        Self {
            entity_path_from_hash: Default::default(),
            times_per_timeline: Default::default(),
            tree: crate::EntityTree::root(),
            data_store: re_arrow_store::DataStore::new(
                InstanceKey::name(),
                DataStoreConfig::default(),
            ),
        }
    }
}

impl EntityDb {
    /// A sorted list of all the entity paths in this database.
    pub fn entity_paths(&self) -> Vec<&EntityPath> {
        use itertools::Itertools as _;
        self.entity_path_from_hash.values().sorted().collect()
    }

    #[inline]
    pub fn entity_path_from_hash(&self, entity_path_hash: &EntityPathHash) -> Option<&EntityPath> {
        self.entity_path_from_hash.get(entity_path_hash)
    }

    /// Returns `true` also for entities higher up in the hierarchy.
    #[inline]
    pub fn is_known_entity(&self, entity_path: &EntityPath) -> bool {
        self.tree.subtree(entity_path).is_some()
    }

    /// If you log `world/points`, then that is a logged entity, but `world` is not,
    /// unless you log something to `world` too.
    #[inline]
    pub fn is_logged_entity(&self, entity_path: &EntityPath) -> bool {
        self.entity_path_from_hash.contains_key(&entity_path.hash())
    }

    fn register_entity_path(&mut self, entity_path: &EntityPath) {
        self.entity_path_from_hash
            .entry(entity_path.hash())
            .or_insert_with(|| entity_path.clone());
    }

    // TODO(cmc): Updates of secondary datastructures should be the result of subscribing to the
    // datastore's changelog and reacting to these changes appropriately. We shouldn't be creating
    // many sources of truth.
    fn add_data_row(&mut self, row: &DataRow) -> Result<(), Error> {
        self.register_entity_path(&row.entity_path);

        for (&timeline, &time_int) in row.timepoint().iter() {
            self.times_per_timeline.insert(timeline, time_int);
        }

        for cell in row.cells().iter() {
            let component_path =
                ComponentPath::new(row.entity_path().clone(), cell.component_name());
            let pending_clears = self.tree.add_data_msg(row.timepoint(), &component_path);

            for (row_id, time_point) in pending_clears {
                // Create and insert an empty component into the arrow store
                // TODO(jleibs): Faster empty-array creation
                let cell =
                    DataCell::from_arrow_empty(cell.component_name(), cell.datatype().clone());

                // NOTE(cmc): The fact that this inserts data to multiple entity paths using a
                // single `RowId` is… interesting. Keep it in mind.
                let row = DataRow::from_cells1(
                    row_id,
                    row.entity_path.clone(),
                    time_point.clone(),
                    cell.num_instances(),
                    cell,
                )?;
                self.data_store.insert_row(&row).ok();

                // Also update the tree with the clear-event
                self.tree.add_data_msg(&time_point, &component_path);
            }
        }

        self.data_store.insert_row(row)?;

        // Look for a `ClearIsRecursive` component, and if it's there, go through the clear path
        // instead.
        use re_types_core::components::ClearIsRecursive;
        if let Some(idx) = row.find_cell(&ClearIsRecursive::name()) {
            let cell = &row.cells()[idx];
            let settings = cell.try_to_native_mono::<ClearIsRecursive>().unwrap();
            let path_op = if settings.map_or(false, |s| s.0) {
                PathOp::ClearRecursive(row.entity_path.clone())
            } else {
                PathOp::ClearComponents(row.entity_path.clone())
            };
            // NOTE: We've just added the row itself, so make sure to bump the row ID already!
            self.add_path_op(row.row_id().next(), row.timepoint(), &path_op);
        }

        Ok(())
    }

    fn add_path_op(&mut self, row_id: RowId, time_point: &TimePoint, path_op: &PathOp) {
        let cleared_paths = self.tree.add_path_op(row_id, time_point, path_op);

        // NOTE: Btree! We need a stable ordering here!
        let mut cells = BTreeMap::<EntityPath, Vec<DataCell>>::default();
        for component_path in cleared_paths {
            if let Some(data_type) = self
                .data_store
                .lookup_datatype(&component_path.component_name)
            {
                let cells = cells
                    .entry(component_path.entity_path.clone())
                    .or_insert_with(Vec::new);

                cells.push(DataCell::from_arrow_empty(
                    component_path.component_name,
                    data_type.clone(),
                ));

                // Update the tree with the clear-event.
                self.tree.add_data_msg(time_point, &component_path);
            }
        }

        // Create and insert empty components into the arrow store.
        let mut row_id = row_id;
        for (ent_path, cells) in cells {
            // NOTE: It is important we insert all those empty components using a single row (id)!
            // 1. It'll be much more efficient when querying that data back.
            // 2. Otherwise we will end up with a flaky row ordering, as we have no way to tie-break
            //    these rows! This flaky ordering will in turn leak through the public
            //    API (e.g. range queries)!!
            match DataRow::from_cells(row_id, time_point.clone(), ent_path, 0, cells) {
                Ok(row) => {
                    self.data_store.insert_row(&row).ok();
                }
                Err(err) => {
                    re_log::error_once!("Failed to insert PathOp {path_op:?}: {err}");
                }
            }

            // Don't reuse the same row ID for the next entity!
            row_id = row_id.next();
        }
    }

    pub fn purge(&mut self, deleted: &re_arrow_store::Deleted) {
        re_tracing::profile_function!();

        let Self {
            entity_path_from_hash: _,
            times_per_timeline,
            tree,
            data_store: _, // purged before this function is called
        } = self;

        let mut actually_deleted = Default::default();

        {
            re_tracing::profile_scope!("tree");
            tree.purge(deleted, &mut actually_deleted);
        }

        {
            re_tracing::profile_scope!("times_per_timeline");
            for (timeline, times) in actually_deleted.timeful {
                if let Some(time_set) = times_per_timeline.get_mut(&timeline) {
                    for time in times {
                        time_set.remove(&time);
                    }
                }
            }
        }
    }
}

// ----------------------------------------------------------------------------

/// An in-memory database built from a stream of [`LogMsg`]es.
///
/// NOTE: all mutation is to be done via public functions!
pub struct StoreDb {
    /// The [`StoreId`] for this log.
    store_id: StoreId,

    /// Set by whomever created this [`StoreDb`].
    pub data_source: Option<re_smart_channel::SmartChannelSource>,

    /// Comes in a special message, [`LogMsg::SetStoreInfo`].
    set_store_info: Option<SetStoreInfo>,

    /// Where we store the entities.
    entity_db: EntityDb,
}

impl StoreDb {
    pub fn new(store_id: StoreId) -> Self {
        Self {
            store_id,
            data_source: None,
            set_store_info: None,
            entity_db: Default::default(),
        }
    }

    /// Helper function to create a recording from a [`StoreInfo`] and a some [`DataRow`]s.
    ///
    /// This is useful to programmatically create recordings from within the viewer, which cannot
    /// use the `re_sdk`, which is not Wasm-compatible.
    pub fn from_info_and_rows(
        store_info: StoreInfo,
        rows: impl IntoIterator<Item = DataRow>,
    ) -> Result<Self, Error> {
        let mut store_db = StoreDb::new(store_info.store_id.clone());

        store_db.set_store_info(SetStoreInfo {
            row_id: RowId::random(),
            info: store_info,
        });
        for row in rows {
            store_db.add_data_row(&row)?;
        }

        Ok(store_db)
    }

    #[inline]
    pub fn entity_db(&self) -> &EntityDb {
        &self.entity_db
    }

    pub fn store_info_msg(&self) -> Option<&SetStoreInfo> {
        self.set_store_info.as_ref()
    }

    pub fn store_info(&self) -> Option<&StoreInfo> {
        self.store_info_msg().map(|msg| &msg.info)
    }

    pub fn app_id(&self) -> Option<&ApplicationId> {
        self.store_info().map(|ri| &ri.application_id)
    }

    #[inline]
    pub fn store(&self) -> &re_arrow_store::DataStore {
        &self.entity_db.data_store
    }

    pub fn store_kind(&self) -> StoreKind {
        self.store_id.kind
    }

    pub fn store_id(&self) -> &StoreId {
        &self.store_id
    }

    pub fn timelines(&self) -> impl ExactSizeIterator<Item = &Timeline> {
        self.times_per_timeline().timelines()
    }

    pub fn times_per_timeline(&self) -> &TimesPerTimeline {
        &self.entity_db.times_per_timeline
    }

    pub fn num_timeless_messages(&self) -> usize {
        self.entity_db.tree.num_timeless_messages()
    }

    pub fn num_rows(&self) -> usize {
        self.entity_db.data_store.num_timeless_rows() as usize
            + self.entity_db.data_store.num_temporal_rows() as usize
    }

    /// Return the current `StoreGeneration`. This can be used to determine whether the
    /// database has been modified since the last time it was queried.
    pub fn generation(&self) -> re_arrow_store::StoreGeneration {
        self.entity_db.data_store.generation()
    }

    pub fn is_empty(&self) -> bool {
        self.set_store_info.is_none() && self.num_rows() == 0
    }

    pub fn add(&mut self, msg: &LogMsg) -> Result<(), Error> {
        re_tracing::profile_function!();

        debug_assert_eq!(msg.store_id(), self.store_id());

        match &msg {
            LogMsg::SetStoreInfo(msg) => self.set_store_info(msg.clone()),

            LogMsg::ArrowMsg(_, arrow_msg) => {
                let table = DataTable::from_arrow_msg(arrow_msg)?;
                self.add_data_table(table)?;
            }
        }

        Ok(())
    }

    pub fn add_data_table(&mut self, mut table: DataTable) -> Result<(), Error> {
        // TODO(#1760): Compute the size of the datacells in the batching threads on the clients.
        table.compute_all_size_bytes();

        // TODO(cmc): batch all of this
        for row in table.to_rows() {
            let row = row?;
            self.add_data_row(&row)?;
        }

        Ok(())
    }

    pub fn add_data_row(&mut self, row: &DataRow) -> Result<(), Error> {
        self.entity_db.add_data_row(row)
    }

    pub fn set_store_info(&mut self, store_info: SetStoreInfo) {
        self.set_store_info = Some(store_info);
    }

    pub fn gc_everything_but_the_latest_row(&mut self) {
        re_tracing::profile_function!();

        self.gc(GarbageCollectionOptions {
            target: re_arrow_store::GarbageCollectionTarget::Everything,
            gc_timeless: true,
            protect_latest: 1, // TODO(jleibs): Bump this after we have an undo buffer
            purge_empty_tables: true,
        });
    }

    /// Free up some RAM by forgetting the older parts of all timelines.
    pub fn purge_fraction_of_ram(&mut self, fraction_to_purge: f32) {
        re_tracing::profile_function!();

        assert!((0.0..=1.0).contains(&fraction_to_purge));
        self.gc(GarbageCollectionOptions {
            target: re_arrow_store::GarbageCollectionTarget::DropAtLeastFraction(
                fraction_to_purge as _,
            ),
            gc_timeless: true,
            protect_latest: 1,
            purge_empty_tables: false,
        });
    }

    pub fn gc(&mut self, gc_options: GarbageCollectionOptions) {
        re_tracing::profile_function!();

        let (deleted, stats_diff) = self.entity_db.data_store.gc(gc_options);
        re_log::trace!(
            num_row_ids_dropped = deleted.row_ids.len(),
            size_bytes_dropped = re_format::format_bytes(stats_diff.total.num_bytes as _),
            "purged datastore"
        );

        let Self {
            store_id: _,
            data_source: _,
            set_store_info: _,
            entity_db,
        } = self;

        entity_db.purge(&deleted);
    }

    /// Key used for sorting recordings in the UI.
    pub fn sort_key(&self) -> impl Ord + '_ {
        self.store_info()
            .map(|info| (info.application_id.0.as_str(), info.started))
    }
}