1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
use arrow2::{array::PrimitiveArray, datatypes::DataType};
use arrow2_convert::{
    arrow_enable_vec_for_type,
    deserialize::ArrowDeserialize,
    field::{ArrowField, FixedSizeVec},
    serialize::ArrowSerialize,
};

use super::Vec3D;

/// A 3x3 column-major Matrix made up of 3 Vecs
///
/// ```
/// use re_components::Mat3x3;
/// use arrow2_convert::field::ArrowField;
/// use arrow2::datatypes::{DataType, Field};
///
/// assert_eq!(
///     Mat3x3::data_type(),
///     DataType::FixedSizeList(
///         Box::new(Field::new("item", DataType::Float32, false)),
///         9
///     )
/// );
/// ```
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Mat3x3([Vec3D; 3]);

impl Mat3x3 {
    pub const IDENTITY: Mat3x3 = Mat3x3([
        Vec3D([1.0, 0.0, 0.0]),
        Vec3D([0.0, 1.0, 0.0]),
        Vec3D([0.0, 0.0, 1.0]),
    ]);
}

impl<Idx> std::ops::Index<Idx> for Mat3x3
where
    Idx: std::slice::SliceIndex<[Vec3D]>,
{
    type Output = Idx::Output;

    #[inline]
    fn index(&self, index: Idx) -> &Self::Output {
        &self.0[index]
    }
}

impl From<[[f32; 3]; 3]> for Mat3x3 {
    #[inline]
    fn from(v: [[f32; 3]; 3]) -> Self {
        Self([Vec3D(v[0]), Vec3D(v[1]), Vec3D(v[2])])
    }
}

#[cfg(feature = "glam")]
impl From<Mat3x3> for glam::Mat3 {
    #[inline]
    fn from(v: Mat3x3) -> Self {
        Self::from_cols(v[0].into(), v[1].into(), v[2].into())
    }
}

#[cfg(feature = "glam")]
impl From<glam::Mat3> for Mat3x3 {
    #[inline]
    fn from(v: glam::Mat3) -> Self {
        Self::from(v.to_cols_array_2d())
    }
}

arrow_enable_vec_for_type!(Mat3x3);

impl ArrowField for Mat3x3 {
    type Type = Self;

    #[inline]
    fn data_type() -> DataType {
        <FixedSizeVec<f32, 9> as ArrowField>::data_type()
    }
}

impl ArrowSerialize for Mat3x3 {
    type MutableArrayType = <FixedSizeVec<f32, 9> as ArrowSerialize>::MutableArrayType;

    #[inline]
    fn new_array() -> Self::MutableArrayType {
        FixedSizeVec::<f32, 9>::new_array()
    }

    #[inline]
    fn arrow_serialize(v: &Self, array: &mut Self::MutableArrayType) -> arrow2::error::Result<()> {
        for col in v.0 {
            array.mut_values().extend_from_slice(&col.0);
        }
        array.try_push_valid()
    }
}

impl ArrowDeserialize for Mat3x3 {
    type ArrayType = <FixedSizeVec<f32, 9> as ArrowDeserialize>::ArrayType;

    #[inline]
    fn arrow_deserialize(
        v: <&Self::ArrayType as IntoIterator>::Item,
    ) -> Option<<Self as ArrowField>::Type> {
        v.map(|v| {
            let slice = v
                .as_any()
                .downcast_ref::<PrimitiveArray<f32>>()
                .unwrap()
                .values()
                .as_slice();
            Mat3x3([
                Vec3D(slice[0..3].try_into().unwrap()),
                Vec3D(slice[3..6].try_into().unwrap()),
                Vec3D(slice[6..9].try_into().unwrap()),
            ])
        })
    }
}

#[test]
fn test_mat3x3_roundtrip() {
    use arrow2::array::Array;
    use arrow2_convert::{deserialize::TryIntoCollection, serialize::TryIntoArrow};

    let mats_in: Vec<Mat3x3> = vec![
        [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]].into(),
        [[11.0, 12.0, 13.0], [14.0, 15.0, 16.0], [17.0, 18.0, 19.0]].into(),
    ];
    let array: Box<dyn Array> = mats_in.try_into_arrow().unwrap();
    let mats_out: Vec<Mat3x3> = TryIntoCollection::try_into_collection(array).unwrap();
    assert_eq!(mats_in, mats_out);
}