1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
use std::{collections::BTreeSet, sync::Arc};

use ahash::HashMap;
use arrow2::array::{Array as _, ListArray as ArrowListArray};
use itertools::Itertools as _;

use re_chunk::{Chunk, EntityPath, RowId};
use re_types_core::SizeBytes;

use crate::{
    store::ChunkIdSetPerTime, ChunkStore, ChunkStoreChunkStats, ChunkStoreConfig, ChunkStoreDiff,
    ChunkStoreError, ChunkStoreEvent, ChunkStoreResult,
};

// Used all over in docstrings.
#[allow(unused_imports)]
use crate::ChunkId;

// ---

impl ChunkStore {
    /// Inserts a [`Chunk`] in the store.
    ///
    /// Iff the store was modified, all registered subscribers will be notified and the
    /// resulting [`ChunkStoreEvent`] will be returned, or `None` otherwise.
    ///
    /// * Trying to insert an unsorted chunk ([`Chunk::is_sorted`]) will fail with an error.
    /// * Inserting a duplicated [`ChunkId`] will result in a no-op.
    /// * Inserting an empty [`Chunk`] will result in a no-op.
    pub fn insert_chunk(&mut self, chunk: &Arc<Chunk>) -> ChunkStoreResult<Vec<ChunkStoreEvent>> {
        if self.chunks_per_chunk_id.contains_key(&chunk.id()) {
            // We assume that chunk IDs are unique, and that reinserting a chunk has no effect.
            re_log::warn_once!(
                "Chunk #{} was inserted more than once (this has no effect)",
                chunk.id()
            );
            return Ok(Vec::new());
        }

        if !chunk.is_sorted() {
            return Err(ChunkStoreError::UnsortedChunk);
        }

        let Some(row_id_range) = chunk.row_id_range() else {
            return Ok(Vec::new());
        };

        re_tracing::profile_function!(format!("{}", row_id_range.0));

        self.insert_id += 1;

        let non_compacted_chunk = Arc::clone(chunk); // we'll need it to create the store event

        let (chunk, diffs) = if chunk.is_static() {
            // Static data: make sure to keep the most recent chunk available for each component column.
            re_tracing::profile_scope!("static");

            let row_id_range_per_component = chunk.row_id_range_per_component();

            for (&component_name, list_array) in chunk.components() {
                let is_empty = list_array
                    .validity()
                    .map_or(false, |validity| validity.is_empty());
                if is_empty {
                    continue;
                }

                let Some((_row_id_min, row_id_max)) =
                    row_id_range_per_component.get(&component_name)
                else {
                    continue;
                };

                self.static_chunk_ids_per_entity
                    .entry(chunk.entity_path().clone())
                    .or_default()
                    .entry(component_name)
                    .and_modify(|cur_chunk_id| {
                        // NOTE: When attempting to overwrite static data, the chunk with the most
                        // recent data within -- according to RowId -- wins.

                        let cur_row_id_max = self.chunks_per_chunk_id.get(cur_chunk_id).map_or(
                            RowId::ZERO,
                            |chunk| {
                                chunk
                                    .row_id_range_per_component()
                                    .get(&component_name)
                                    .map_or(RowId::ZERO, |(_, row_id_max)| *row_id_max)
                            },
                        );
                        if *row_id_max > cur_row_id_max {
                            *cur_chunk_id = chunk.id();
                        }
                    })
                    .or_insert_with(|| chunk.id());
            }

            self.static_chunks_stats += ChunkStoreChunkStats::from_chunk(chunk);

            (
                Arc::clone(chunk),
                vec![ChunkStoreDiff::addition(
                    non_compacted_chunk, /* added */
                    None,                /* compacted */
                )],
            )
        } else {
            // Temporal data: just index the chunk on every dimension of interest.
            re_tracing::profile_scope!("temporal");

            let (elected_chunk, chunk_or_compacted) = {
                re_tracing::profile_scope!("election");

                let elected_chunk = self.find_and_elect_compaction_candidate(chunk);

                let chunk_or_compacted = if let Some(elected_chunk) = &elected_chunk {
                    let chunk_rowid_min = chunk.row_id_range().map(|(min, _)| min);
                    let elected_rowid_min = elected_chunk.row_id_range().map(|(min, _)| min);

                    let mut compacted = if elected_rowid_min < chunk_rowid_min {
                        re_tracing::profile_scope!("concat");
                        elected_chunk.concatenated(chunk)?
                    } else {
                        re_tracing::profile_scope!("concat");
                        chunk.concatenated(elected_chunk)?
                    };

                    {
                        re_tracing::profile_scope!("sort");
                        compacted.sort_if_unsorted();
                    }

                    re_log::trace!(
                        "compacted {} ({} rows) and {} ({} rows) together, resulting in {} ({} rows)",
                        chunk.id(),
                        re_format::format_uint(chunk.num_rows()),
                        elected_chunk.id(),
                        re_format::format_uint(elected_chunk.num_rows()),
                        compacted.id(),
                        re_format::format_uint(compacted.num_rows()),
                    );

                    Arc::new(compacted)
                } else {
                    Arc::clone(chunk)
                };

                (elected_chunk, chunk_or_compacted)
            };

            {
                re_tracing::profile_scope!("insertion (w/ component)");

                let temporal_chunk_ids_per_timeline = self
                    .temporal_chunk_ids_per_entity_per_component
                    .entry(chunk_or_compacted.entity_path().clone())
                    .or_default();

                // NOTE: We must make sure to use the time range of each specific component column
                // here, or we open ourselves to nasty edge cases.
                //
                // See the `latest_at_sparse_component_edge_case` test.
                for (timeline, time_range_per_component) in
                    chunk_or_compacted.time_range_per_component()
                {
                    let temporal_chunk_ids_per_component =
                        temporal_chunk_ids_per_timeline.entry(timeline).or_default();

                    for (component_name, time_range) in time_range_per_component {
                        let temporal_chunk_ids_per_time = temporal_chunk_ids_per_component
                            .entry(component_name)
                            .or_default();

                        // See `ChunkIdSetPerTime::max_interval_length`'s documentation.
                        temporal_chunk_ids_per_time.max_interval_length = u64::max(
                            temporal_chunk_ids_per_time.max_interval_length,
                            time_range.abs_length(),
                        );

                        temporal_chunk_ids_per_time
                            .per_start_time
                            .entry(time_range.min())
                            .or_default()
                            .insert(chunk_or_compacted.id());
                        temporal_chunk_ids_per_time
                            .per_end_time
                            .entry(time_range.max())
                            .or_default()
                            .insert(chunk_or_compacted.id());
                    }
                }
            }

            {
                re_tracing::profile_scope!("insertion (w/o component)");

                let temporal_chunk_ids_per_timeline = self
                    .temporal_chunk_ids_per_entity
                    .entry(chunk_or_compacted.entity_path().clone())
                    .or_default();

                for (timeline, time_column) in chunk_or_compacted.timelines() {
                    let temporal_chunk_ids_per_time = temporal_chunk_ids_per_timeline
                        .entry(*timeline)
                        .or_default();

                    let time_range = time_column.time_range();

                    // See `ChunkIdSetPerTime::max_interval_length`'s documentation.
                    temporal_chunk_ids_per_time.max_interval_length = u64::max(
                        temporal_chunk_ids_per_time.max_interval_length,
                        time_range.abs_length(),
                    );

                    temporal_chunk_ids_per_time
                        .per_start_time
                        .entry(time_range.min())
                        .or_default()
                        .insert(chunk_or_compacted.id());
                    temporal_chunk_ids_per_time
                        .per_end_time
                        .entry(time_range.max())
                        .or_default()
                        .insert(chunk_or_compacted.id());
                }
            }

            self.temporal_chunks_stats += ChunkStoreChunkStats::from_chunk(&chunk_or_compacted);

            let mut diff = ChunkStoreDiff::addition(
                // NOTE: We are advertising only the non-compacted chunk as "added", i.e. only the new data.
                //
                // This makes sure that downstream subscribers only have to process what is new,
                // instead of needlessly reprocessing old rows that would appear to have been
                // removed and reinserted due to compaction.
                //
                // Subscribers will still be capable of tracking which chunks have been merged with which
                // by using the compaction report that we fill below.
                Arc::clone(&non_compacted_chunk), /* added */
                None,                             /* compacted */
            );
            if let Some(elected_chunk) = &elected_chunk {
                // NOTE: The chunk that we've just added has been compacted already!
                let srcs = std::iter::once((non_compacted_chunk.id(), non_compacted_chunk))
                    .chain(
                        self.remove_chunk(elected_chunk.id())
                            .into_iter()
                            .filter(|diff| diff.kind == crate::ChunkStoreDiffKind::Deletion)
                            .map(|diff| (diff.chunk.id(), diff.chunk)),
                    )
                    .collect();
                let dst = chunk_or_compacted.id();

                diff.compacted = Some((srcs, dst));
            }

            (chunk_or_compacted, vec![diff])
        };

        self.chunks_per_chunk_id.insert(chunk.id(), chunk.clone());
        self.chunk_ids_per_min_row_id
            .entry(row_id_range.0)
            .or_default()
            .push(chunk.id());

        for (&component_name, list_array) in chunk.components() {
            self.type_registry.insert(
                component_name,
                ArrowListArray::<i32>::get_child_type(list_array.data_type()).clone(),
            );
        }

        let events = if self.config.enable_changelog {
            let events: Vec<_> = diffs
                .into_iter()
                .map(|diff| ChunkStoreEvent {
                    store_id: self.id.clone(),
                    store_generation: self.generation(),
                    event_id: self
                        .event_id
                        .fetch_add(1, std::sync::atomic::Ordering::Relaxed),
                    diff,
                })
                .collect();

            Self::on_events(&events);

            events
        } else {
            Vec::new()
        };

        Ok(events)
    }

    /// Finds the most appropriate candidate for compaction.
    ///
    /// The algorithm is simple: for each incoming [`Chunk`], we take a look at its future neighbors.
    /// Each neighbor is a potential candidate for compaction.
    ///
    /// Because the chunk is going to be inserted into many different indices -- for each of its timelines
    /// and components -- it will have many direct neighbors.
    /// Everytime we encounter a neighbor, it earns points.
    ///
    /// The neighbor with the most points at the end of the process is elected.
    fn find_and_elect_compaction_candidate(&mut self, chunk: &Arc<Chunk>) -> Option<Arc<Chunk>> {
        re_tracing::profile_function!();

        let mut candidates_below_threshold: HashMap<ChunkId, bool> = HashMap::default();
        let mut check_if_chunk_below_threshold =
            |store: &Self, candidate_chunk_id: ChunkId| -> bool {
                let ChunkStoreConfig {
                    enable_changelog: _,
                    chunk_max_bytes,
                    chunk_max_rows,
                    chunk_max_rows_if_unsorted,
                } = store.config;

                *candidates_below_threshold
                    .entry(candidate_chunk_id)
                    .or_insert_with(|| {
                        store.chunks_per_chunk_id.get(&candidate_chunk_id).map_or(
                            false,
                            |candidate| {
                                if !chunk.concatenable(candidate) {
                                    return false;
                                }

                                let total_bytes = <Chunk as SizeBytes>::total_size_bytes(chunk)
                                    + <Chunk as SizeBytes>::total_size_bytes(candidate);
                                let is_below_bytes_threshold = total_bytes <= chunk_max_bytes;

                                let total_rows = (chunk.num_rows() + candidate.num_rows()) as u64;
                                let is_below_rows_threshold = if candidate.is_time_sorted() {
                                    total_rows <= chunk_max_rows
                                } else {
                                    total_rows <= chunk_max_rows_if_unsorted
                                };

                                is_below_bytes_threshold && is_below_rows_threshold
                            },
                        )
                    })
            };

        let mut candidates: HashMap<ChunkId, u64> = HashMap::default();

        let temporal_chunk_ids_per_timeline = self
            .temporal_chunk_ids_per_entity_per_component
            .get(chunk.entity_path())?;

        for (timeline, time_range_per_component) in chunk.time_range_per_component() {
            let Some(temporal_chunk_ids_per_component) =
                temporal_chunk_ids_per_timeline.get(&timeline)
            else {
                continue;
            };

            for (component_name, time_range) in time_range_per_component {
                let Some(temporal_chunk_ids_per_time) =
                    temporal_chunk_ids_per_component.get(&component_name)
                else {
                    continue;
                };

                {
                    // Direct neighbors (before): 1 point each.
                    if let Some((_data_time, chunk_id_set)) = temporal_chunk_ids_per_time
                        .per_start_time
                        .range(..time_range.min())
                        .next_back()
                    {
                        for &chunk_id in chunk_id_set {
                            if check_if_chunk_below_threshold(self, chunk_id) {
                                *candidates.entry(chunk_id).or_default() += 1;
                            }
                        }
                    }

                    // Direct neighbors (after): 1 point each.
                    if let Some((_data_time, chunk_id_set)) = temporal_chunk_ids_per_time
                        .per_start_time
                        .range(time_range.max().inc()..)
                        .next()
                    {
                        for &chunk_id in chunk_id_set {
                            if check_if_chunk_below_threshold(self, chunk_id) {
                                *candidates.entry(chunk_id).or_default() += 1;
                            }
                        }
                    }

                    let chunk_id_set = temporal_chunk_ids_per_time
                        .per_start_time
                        .get(&time_range.min());

                    // Shared start times: 2 points each.
                    for chunk_id in chunk_id_set.iter().flat_map(|set| set.iter().copied()) {
                        if check_if_chunk_below_threshold(self, chunk_id) {
                            *candidates.entry(chunk_id).or_default() += 2;
                        }
                    }
                }
            }
        }

        debug_assert!(!candidates.contains_key(&chunk.id()));

        let mut candidates = candidates.into_iter().collect_vec();
        candidates.sort_by_key(|(_chunk_id, points)| *points);
        candidates.reverse();

        candidates
            .into_iter()
            .find_map(|(chunk_id, _points)| self.chunks_per_chunk_id.get(&chunk_id).map(Arc::clone))
    }

    /// Unconditionally drops all the data for a given `entity_path`.
    ///
    /// Returns the list of `Chunk`s that were dropped from the store in the form of [`ChunkStoreEvent`]s.
    ///
    /// This is _not_ recursive. The store is unaware of the entity hierarchy.
    pub fn drop_entity_path(&mut self, entity_path: &EntityPath) -> Vec<ChunkStoreEvent> {
        re_tracing::profile_function!(entity_path.to_string());

        self.gc_id += 1; // close enough

        let generation = self.generation();

        let Self {
            id,
            config: _,
            type_registry: _,
            chunks_per_chunk_id,
            chunk_ids_per_min_row_id,
            temporal_chunk_ids_per_entity_per_component,
            temporal_chunk_ids_per_entity,
            temporal_chunks_stats,
            static_chunk_ids_per_entity,
            static_chunks_stats,
            insert_id: _,
            query_id: _,
            gc_id: _,
            event_id,
        } = self;

        let dropped_static_chunks = {
            let dropped_static_chunk_ids: BTreeSet<_> = static_chunk_ids_per_entity
                .remove(entity_path)
                .unwrap_or_default()
                .into_values()
                .collect();

            chunk_ids_per_min_row_id.retain(|_row_id, chunk_ids| {
                chunk_ids.retain(|chunk_id| !dropped_static_chunk_ids.contains(chunk_id));
                !chunk_ids.is_empty()
            });

            dropped_static_chunk_ids.into_iter()
        };

        let dropped_temporal_chunks = {
            temporal_chunk_ids_per_entity_per_component.remove(entity_path);

            let dropped_temporal_chunk_ids: BTreeSet<_> = temporal_chunk_ids_per_entity
                .remove(entity_path)
                .unwrap_or_default()
                .into_values()
                .flat_map(|temporal_chunk_ids_per_time| {
                    let ChunkIdSetPerTime {
                        max_interval_length: _,
                        per_start_time,
                        per_end_time: _, // same chunk IDs as above
                    } = temporal_chunk_ids_per_time;

                    per_start_time
                        .into_values()
                        .flat_map(|chunk_ids| chunk_ids.into_iter())
                })
                .collect();

            chunk_ids_per_min_row_id.retain(|_row_id, chunk_ids| {
                chunk_ids.retain(|chunk_id| !dropped_temporal_chunk_ids.contains(chunk_id));
                !chunk_ids.is_empty()
            });

            dropped_temporal_chunk_ids.into_iter()
        };

        let dropped_static_chunks = dropped_static_chunks
            .filter_map(|chunk_id| chunks_per_chunk_id.remove(&chunk_id))
            .inspect(|chunk| {
                *static_chunks_stats -= ChunkStoreChunkStats::from_chunk(chunk);
            })
            // NOTE: gotta collect to release the mut ref on `chunks_per_chunk_id`.
            .collect_vec();

        let dropped_temporal_chunks = dropped_temporal_chunks
            .filter_map(|chunk_id| chunks_per_chunk_id.remove(&chunk_id))
            .inspect(|chunk| {
                *temporal_chunks_stats -= ChunkStoreChunkStats::from_chunk(chunk);
            });

        if self.config.enable_changelog {
            let events: Vec<_> = dropped_static_chunks
                .into_iter()
                .chain(dropped_temporal_chunks)
                .map(ChunkStoreDiff::deletion)
                .map(|diff| ChunkStoreEvent {
                    store_id: id.clone(),
                    store_generation: generation.clone(),
                    event_id: event_id.fetch_add(1, std::sync::atomic::Ordering::Relaxed),
                    diff,
                })
                .collect();

            Self::on_events(&events);

            events
        } else {
            Vec::new()
        }
    }
}

#[cfg(test)]
mod tests {
    use re_chunk::Timeline;
    use re_log_types::example_components::MyPoint;

    use super::*;

    // TODO(cmc): We could have more test coverage here, especially regarding thresholds etc.
    // For now the development and maintenance cost doesn't seem to be worth it.
    // We can re-assess later if things turns out to be shaky in practice.

    #[test]
    fn compaction_simple() -> anyhow::Result<()> {
        re_log::setup_logging();

        let mut store = ChunkStore::new(
            re_log_types::StoreId::random(re_log_types::StoreKind::Recording),
            Default::default(),
        );

        let entity_path = EntityPath::from("this/that");

        let row_id1 = RowId::new();
        let row_id2 = RowId::new();
        let row_id3 = RowId::new();
        let row_id4 = RowId::new();
        let row_id5 = RowId::new();
        let row_id6 = RowId::new();
        let row_id7 = RowId::new();
        let row_id8 = RowId::new();
        let row_id9 = RowId::new();
        let row_id10 = RowId::new();

        let timepoint1 = [(Timeline::new_sequence("frame"), 1)];
        let timepoint2 = [(Timeline::new_sequence("frame"), 3)];
        let timepoint3 = [(Timeline::new_sequence("frame"), 5)];
        let timepoint4 = [(Timeline::new_sequence("frame"), 7)];
        let timepoint5 = [(Timeline::new_sequence("frame"), 9)];

        let points1 = &[MyPoint::new(1.0, 1.0)];
        let points2 = &[MyPoint::new(2.0, 2.0)];
        let points3 = &[MyPoint::new(3.0, 3.0)];
        let points4 = &[MyPoint::new(4.0, 4.0)];
        let points5 = &[MyPoint::new(5.0, 5.0)];

        let chunk1 = Chunk::builder(entity_path.clone())
            .with_component_batches(row_id1, timepoint1, [points1 as _])
            .with_component_batches(row_id2, timepoint2, [points2 as _])
            .with_component_batches(row_id3, timepoint3, [points3 as _])
            .build()?;
        let chunk2 = Chunk::builder(entity_path.clone())
            .with_component_batches(row_id4, timepoint4, [points4 as _])
            .with_component_batches(row_id5, timepoint5, [points5 as _])
            .build()?;
        let chunk3 = Chunk::builder(entity_path.clone())
            .with_component_batches(row_id6, timepoint1, [points1 as _])
            .with_component_batches(row_id7, timepoint2, [points2 as _])
            .with_component_batches(row_id8, timepoint3, [points3 as _])
            .build()?;
        let chunk4 = Chunk::builder(entity_path.clone())
            .with_component_batches(row_id9, timepoint4, [points4 as _])
            .with_component_batches(row_id10, timepoint5, [points5 as _])
            .build()?;

        let chunk1 = Arc::new(chunk1);
        let chunk2 = Arc::new(chunk2);
        let chunk3 = Arc::new(chunk3);
        let chunk4 = Arc::new(chunk4);

        eprintln!("---\n{store}\ninserting {}", chunk1.id());

        store.insert_chunk(&chunk1)?;

        eprintln!("---\n{store}\ninserting {}", chunk2.id());

        store.insert_chunk(&chunk2)?;

        eprintln!("---\n{store}\ninserting {}", chunk3.id());

        store.insert_chunk(&chunk3)?;

        eprintln!("---\n{store}\ninserting {}", chunk4.id());

        store.insert_chunk(&chunk4)?;

        eprintln!("---\n{store}");

        let got = store
            .chunks_per_chunk_id
            .first_key_value()
            .map(|(_id, chunk)| chunk)
            .unwrap();

        let expected = Chunk::builder_with_id(got.id(), entity_path.clone())
            .with_component_batches(row_id1, timepoint1, [points1 as _])
            .with_component_batches(row_id2, timepoint2, [points2 as _])
            .with_component_batches(row_id3, timepoint3, [points3 as _])
            .with_component_batches(row_id4, timepoint4, [points4 as _])
            .with_component_batches(row_id5, timepoint5, [points5 as _])
            .with_component_batches(row_id6, timepoint1, [points1 as _])
            .with_component_batches(row_id7, timepoint2, [points2 as _])
            .with_component_batches(row_id8, timepoint3, [points3 as _])
            .with_component_batches(row_id9, timepoint4, [points4 as _])
            .with_component_batches(row_id10, timepoint5, [points5 as _])
            .build()?;

        assert_eq!(1, store.chunks_per_chunk_id.len());
        assert_eq!(
            expected,
            **got,
            "{}",
            similar_asserts::SimpleDiff::from_str(
                &format!("{expected}"),
                &format!("{got}"),
                "expected",
                "got",
            ),
        );

        Ok(())
    }
}