//! Provides the convolution functionality from the CUDA cuDNN API.
//!
//! Includes the convolution and filter functionality.
use crate::ffi::*;
use crate::{Error, API};
impl API {
//
// cuDNN Filter
//
/// Creates a generic CUDA cuDNN Filter Descriptor.
pub fn create_filter_descriptor() -> Result<cudnnFilterDescriptor_t, Error> {
unsafe { API::ffi_create_filter_descriptor() }
}
/// Destroys a CUDA cuDNN Filter Descriptor.
///
/// Should be called when freeing a CUDA::Descriptor to not trash up the CUDA device.
pub fn destroy_filter_descriptor(desc: cudnnFilterDescriptor_t) -> Result<(), Error> {
unsafe { API::ffi_destroy_filter_descriptor(desc) }
}
/// Initializes a generic CUDA cuDNN Filter Descriptor with specific properties.
pub fn set_filter_descriptor(
desc: cudnnFilterDescriptor_t,
data_type: cudnnDataType_t,
tensor_format: cudnnTensorFormat_t,
nb_dims: ::libc::c_int,
filter_dim_a: *const ::libc::c_int,
) -> Result<(), Error> {
unsafe {
API::ffi_set_filter_nd_descriptor(desc, data_type, tensor_format, nb_dims, filter_dim_a)
}
}
unsafe fn ffi_create_filter_descriptor() -> Result<cudnnFilterDescriptor_t, Error> {
let mut desc: cudnnFilterDescriptor_t = ::std::ptr::null_mut();
match cudnnCreateFilterDescriptor(&mut desc) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(desc),
cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => {
Err(Error::AllocFailed("The resources could not be allocated."))
}
status => Err(Error::Unknown(
"Unable to create generic CUDA cuDNN Filter Descriptor.",
status as i32 as u64,
)),
}
}
unsafe fn ffi_destroy_filter_descriptor(desc: cudnnFilterDescriptor_t) -> Result<(), Error> {
match cudnnDestroyFilterDescriptor(desc) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
status => Err(Error::Unknown(
"Unable to destroy CUDA cuDNN Filter Descriptor.",
status as i32 as u64,
)),
}
}
unsafe fn ffi_set_filter_nd_descriptor(
desc: cudnnFilterDescriptor_t,
data_type: cudnnDataType_t,
tensor_format: cudnnTensorFormat_t,
nb_dims: ::libc::c_int,
filter_dim_a: *const ::libc::c_int,
) -> Result<(), Error> {
match cudnnSetFilterNdDescriptor(desc, data_type, tensor_format, nb_dims, filter_dim_a) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam(
"`filter_dim_a` has a negative element or invalid `data_type` provided.",
)),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => {
Err(Error::NotSupported("`nb_dims` exceeds CUDNN_DIM_MAX."))
}
status => Err(Error::Unknown(
"Unable to set CUDA cuDNN Filter Descriptor.",
status as i32 as u64,
)),
}
}
///
/// cuDNN Convolution Configuration
///
/// Returns the most performant convolutional forward algorithm, for the given scenario.
pub fn find_convolution_forward_algorithm(
handle: cudnnHandle_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<Vec<cudnnConvolutionFwdAlgoPerf_t>, Error> {
unsafe {
API::ffi_find_convolution_forward_algorithm(
handle,
src_desc,
filter_desc,
conv_desc,
dest_desc,
)
}
}
/// Returns the workspace size in byte, which are needed for the given convolutional algorithm.
pub fn get_convolution_forward_workspace_size(
handle: cudnnHandle_t,
algo: cudnnConvolutionFwdAlgo_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<usize, Error> {
unsafe {
API::ffi_get_convolution_forward_workspace_size(
handle,
algo,
src_desc,
filter_desc,
conv_desc,
dest_desc,
)
}
}
/// Returns the most performant convolutional backward data algorithm, for the given scenario.
pub fn find_convolution_backward_filter_algorithm(
handle: cudnnHandle_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<Vec<cudnnConvolutionBwdFilterAlgoPerf_t>, Error> {
unsafe {
API::ffi_find_convolution_backward_filter_algorithm(
handle,
src_desc,
dest_desc,
conv_desc,
filter_desc,
)
}
}
/// Returns the workspace size in byte, which are needed for the given convolutional algorithm.
pub fn get_convolution_backward_filter_workspace_size(
handle: cudnnHandle_t,
algo: cudnnConvolutionBwdFilterAlgo_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<usize, Error> {
unsafe {
API::ffi_get_convolution_backward_filter_workspace_size(
handle,
algo,
src_desc,
dest_desc,
conv_desc,
filter_desc,
)
}
}
/// Returns the most performant convolutional backward data algorithm, for the given scenario.
pub fn find_convolution_backward_data_algorithm(
handle: cudnnHandle_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<Vec<cudnnConvolutionBwdDataAlgoPerf_t>, Error> {
unsafe {
API::ffi_find_convolution_backward_data_algorithm(
handle,
filter_desc,
dest_desc,
conv_desc,
src_desc,
)
}
}
/// Returns the workspace size in byte, which are needed for the given convolutional algorithm.
pub fn get_convolution_backward_data_workspace_size(
handle: cudnnHandle_t,
algo: cudnnConvolutionBwdDataAlgo_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<usize, Error> {
unsafe {
API::ffi_get_convolution_backward_data_workspace_size(
handle,
algo,
filter_desc,
dest_desc,
conv_desc,
src_desc,
)
}
}
unsafe fn ffi_find_convolution_forward_algorithm(
handle: cudnnHandle_t,
src_desc: cudnnTensorDescriptor_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<Vec<cudnnConvolutionFwdAlgoPerf_t>, Error> {
let mut perf_results: Vec<cudnnConvolutionFwdAlgoPerf_t> = vec![
cudnnConvolutionFwdAlgoPerf_t::default(),
cudnnConvolutionFwdAlgoPerf_t::default(),
];
match cudnnFindConvolutionForwardAlgorithm(handle, src_desc, filter_desc, conv_desc, dest_desc, 2, &mut 0, perf_results.as_mut_ptr()) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(perf_results),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The handle is not allocated properly. The `src-`, `filter-` or `dest-` descriptor is not allocated properly. The `src-`, `filter-` or `dest-` descriptor has fewer than 1 dimension. Either `returnedCount` or `perfResults` is pointing to NULL. The requestedCount is less than 1.")),
cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => Err(Error::AllocFailed("The resources could not be allocated.")),
status => Err(Error::Unknown("Unable to find CUDA cuDNN Convolution Forward Algorithm.", status as i32 as u64)),
}
}
unsafe fn ffi_get_convolution_forward_workspace_size(
handle: cudnnHandle_t,
algo: cudnnConvolutionFwdAlgo_t,
src_desc: cudnnTensorDescriptor_t,
filter_desc: cudnnFilterDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
) -> Result<::libc::size_t, Error> {
let mut size = 0usize;
match cudnnGetConvolutionForwardWorkspaceSize(handle, src_desc, filter_desc, conv_desc, dest_desc, algo, &mut size) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(size),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc` is NULL. The tensor `dest_desc` or `filter_desc` are not of the same dimension as `src_desc`. The tensor `src_desc`, `dest_desc` or `filter_desc` are not of the same data type. The numbers of feature maps of the tensor `src_desc` and `filter_desc` differ. The tensor `src_desc` has a dimension smaller than 3.")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.")),
status => Err(Error::Unknown("Unable to get CUDA cuDNN Convolution Forward Workspace size.", status as i32 as u64)),
}
}
unsafe fn ffi_find_convolution_backward_filter_algorithm(
handle: cudnnHandle_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
filter_desc: cudnnFilterDescriptor_t,
) -> Result<Vec<cudnnConvolutionBwdFilterAlgoPerf_t>, Error> {
let mut perf_results: Vec<cudnnConvolutionBwdFilterAlgoPerf_t> = vec![
cudnnConvolutionBwdFilterAlgoPerf_t::default(),
cudnnConvolutionBwdFilterAlgoPerf_t::default(),
];
match cudnnFindConvolutionBackwardFilterAlgorithm(handle, src_desc, dest_desc, conv_desc, filter_desc, 2, &mut 0, perf_results.as_mut_ptr()) { cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(perf_results), cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The handle is not allocated properly. The `src-`, `filter-` or `dest-` descriptor is not allocated properly. The `src-`, `filter-` or `dest-` descriptor has fewer than 1 dimension. Either `returnedCount` or `perfResults` is pointing to NULL. The requestedCount is less than 1.")), cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => Err(Error::AllocFailed("The resources could not be allocated.")),
status => Err(Error::Unknown("Unable to find CUDA cuDNN Convolution Backward Filter Algorithm.", status as i32 as u64)),
}
}
unsafe fn ffi_get_convolution_backward_filter_workspace_size(
handle: cudnnHandle_t,
algo: cudnnConvolutionBwdFilterAlgo_t,
src_desc: cudnnTensorDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
filter_desc: cudnnFilterDescriptor_t,
) -> Result<::libc::size_t, Error> {
let mut size = 0usize;
match cudnnGetConvolutionBackwardFilterWorkspaceSize(handle, src_desc, dest_desc, conv_desc, filter_desc, algo, &mut size) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(size),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc` is NULL. The tensor `dest_desc` or `filter_desc` are not of the same dimension as `src_desc`. The tensor `src_desc`, `dest_desc` or `filter_desc` are not of the same data type. The numbers of feature maps of the tensor `src_desc` and `filter_desc` differ. The tensor `src_desc` has a dimension smaller than 3.")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.")),
status => Err(Error::Unknown("Unable to get CUDA cuDNN Convolution Backward Filter Workspace size.", status as i32 as u64)),
}
}
unsafe fn ffi_find_convolution_backward_data_algorithm(
handle: cudnnHandle_t,
filter_desc: cudnnFilterDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
) -> Result<Vec<cudnnConvolutionBwdDataAlgoPerf_t>, Error> {
let mut perf_results: Vec<cudnnConvolutionBwdDataAlgoPerf_t> = vec![
cudnnConvolutionBwdDataAlgoPerf_t::default(),
cudnnConvolutionBwdDataAlgoPerf_t::default(),
];
match cudnnFindConvolutionBackwardDataAlgorithm(handle, filter_desc, dest_desc, conv_desc, src_desc, 2, &mut 0, perf_results.as_mut_ptr()) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(perf_results),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: The handle is not allocated properly. The `src-`, `filter-` or `dest-` descriptor is not allocated properly. The `src-`, `filter-` or `dest-` descriptor has fewer than 1 dimension. Either `returnedCount` or `perfResults` is pointing to NULL. The requestedCount is less than 1.")),
cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => Err(Error::AllocFailed("The resources could not be allocated.")),
status => Err(Error::Unknown("Unable to find CUDA cuDNN Convolution Backward Data Algorithm.", status as i32 as u64)),
}
}
unsafe fn ffi_get_convolution_backward_data_workspace_size(
handle: cudnnHandle_t,
algo: cudnnConvolutionBwdDataAlgo_t,
filter_desc: cudnnFilterDescriptor_t,
dest_desc: cudnnTensorDescriptor_t,
conv_desc: cudnnConvolutionDescriptor_t,
src_desc: cudnnTensorDescriptor_t,
) -> Result<::libc::size_t, Error> {
let mut size = 0usize;
match cudnnGetConvolutionBackwardDataWorkspaceSize(handle, filter_desc, dest_desc, conv_desc, src_desc, algo, &mut size) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(size),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc` is NULL. The tensor `dest_desc` or `filter_desc` are not of the same dimension as `src_desc`. The tensor `src_desc`, `dest_desc` or `filter_desc` are not of the same data type. The numbers of feature maps of the tensor `src_desc` and `filter_desc` differ. The tensor `src_desc` has a dimension smaller than 3.")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("The combination of the tensor descriptors, filter descriptor and convolution descriptor is not supported for the specified algorithm.")),
status => Err(Error::Unknown("Unable to get CUDA cuDNN Convolution Backward Data Workspace size.", status as i32 as u64)),
}
}
//
// cuDNN Convolution
//
/// Creates a generic CUDA cuDNN Convolution Descriptor.
pub fn create_convolution_descriptor() -> Result<cudnnConvolutionDescriptor_t, Error> {
unsafe { API::ffi_create_convolution_descriptor() }
}
/// Destroys a CUDA cuDNN Convolution Descriptor.
///
/// Should be called when freeing a CUDA::Descriptor to not trash up the CUDA device.
pub fn destroy_convolution_descriptor(desc: cudnnConvolutionDescriptor_t) -> Result<(), Error> {
unsafe { API::ffi_destroy_convolution_descriptor(desc) }
}
/// Initializes a generic CUDA cuDNN Convolution Descriptor with specific properties.
pub fn set_convolution_descriptor(
desc: cudnnConvolutionDescriptor_t,
data_type: cudnnDataType_t,
mode: cudnnConvolutionMode_t,
array_length: ::libc::c_int,
pad_a: *const ::libc::c_int,
filter_stride_a: *const ::libc::c_int,
upscale_a: *const ::libc::c_int,
) -> Result<(), Error> {
unsafe {
API::ffi_set_convolution_nd_descriptor(
desc,
data_type,
mode,
array_length,
pad_a,
filter_stride_a,
upscale_a,
)
}
}
/// Computes a convolution forward function.
#[allow(clippy::too_many_arguments)]
pub fn convolution_forward(
handle: cudnnHandle_t,
algo: cudnnConvolutionFwdAlgo_t,
conv_desc: cudnnConvolutionDescriptor_t,
work_space: *mut ::libc::c_void,
work_size_in_bytes: ::libc::size_t,
alpha: *const ::libc::c_void,
src_desc: cudnnTensorDescriptor_t,
src_data: *const ::libc::c_void,
filter_desc: cudnnFilterDescriptor_t,
filter_data: *const ::libc::c_void,
beta: *const ::libc::c_void,
dest_desc: cudnnTensorDescriptor_t,
dest_data: *mut ::libc::c_void,
) -> Result<(), Error> {
unsafe {
API::ffi_convolution_forward(
handle,
alpha,
src_desc,
src_data,
filter_desc,
filter_data,
conv_desc,
algo,
work_space,
work_size_in_bytes,
beta,
dest_desc,
dest_data,
)
}
}
/// Computes a convolution backward function w.r.t the bias.
pub fn convolution_backward_bias(
handle: cudnnHandle_t,
alpha: *const ::libc::c_void,
src_desc: cudnnTensorDescriptor_t,
src_data: *const ::libc::c_void,
beta: *const ::libc::c_void,
dest_desc: cudnnTensorDescriptor_t,
dest_data: *mut ::libc::c_void,
) -> Result<(), Error> {
unsafe {
API::ffi_convolution_backward_bias(
handle, alpha, src_desc, src_data, beta, dest_desc, dest_data,
)
}
}
/// Computes a convolution backward function w.r.t filter coefficient.
#[allow(clippy::too_many_arguments)]
pub fn convolution_backward_filter(
handle: cudnnHandle_t,
algo: cudnnConvolutionBwdFilterAlgo_t,
conv_desc: cudnnConvolutionDescriptor_t,
work_space: *mut ::libc::c_void,
work_size_in_bytes: ::libc::size_t,
alpha: *const ::libc::c_void,
src_desc: cudnnTensorDescriptor_t,
src_data: *const ::libc::c_void,
diff_desc: cudnnTensorDescriptor_t,
diff_data: *const ::libc::c_void,
beta: *const ::libc::c_void,
grad_desc: cudnnFilterDescriptor_t,
grad_data: *mut ::libc::c_void,
) -> Result<(), Error> {
unsafe {
API::ffi_convolution_backward_filter(
handle,
alpha,
src_desc,
src_data,
diff_desc,
diff_data,
conv_desc,
algo,
work_space,
work_size_in_bytes,
beta,
grad_desc,
grad_data,
)
}
}
/// Computes a convolution backward function w.r.t the output tensor.
#[allow(clippy::too_many_arguments)]
pub fn convolution_backward_data(
handle: cudnnHandle_t,
algo: cudnnConvolutionBwdDataAlgo_t,
conv_desc: cudnnConvolutionDescriptor_t,
work_space: *mut ::libc::c_void,
work_size_in_bytes: ::libc::size_t,
alpha: *const ::libc::c_void,
filter_desc: cudnnFilterDescriptor_t,
filter_data: *const ::libc::c_void,
diff_desc: cudnnTensorDescriptor_t,
diff_data: *const ::libc::c_void,
beta: *const ::libc::c_void,
grad_desc: cudnnTensorDescriptor_t,
grad_data: *mut ::libc::c_void,
) -> Result<(), Error> {
unsafe {
API::ffi_convolution_backward_data(
handle,
alpha,
filter_desc,
filter_data,
diff_desc,
diff_data,
conv_desc,
algo,
work_space,
work_size_in_bytes,
beta,
grad_desc,
grad_data,
)
}
}
unsafe fn ffi_create_convolution_descriptor() -> Result<cudnnConvolutionDescriptor_t, Error> {
let mut desc: cudnnConvolutionDescriptor_t = ::std::ptr::null_mut();
match cudnnCreateConvolutionDescriptor(&mut desc) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(desc),
cudnnStatus_t::CUDNN_STATUS_ALLOC_FAILED => {
Err(Error::AllocFailed("The resources could not be allocated."))
}
status => Err(Error::Unknown(
"Unable to create generic CUDA cuDNN Convolution Descriptor.",
status as i32 as u64,
)),
}
}
unsafe fn ffi_destroy_convolution_descriptor(
desc: cudnnConvolutionDescriptor_t,
) -> Result<(), Error> {
match cudnnDestroyConvolutionDescriptor(desc) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
status => Err(Error::Unknown(
"Unable to destroy CUDA cuDNN Convolution Descriptor.",
status as i32 as u64,
)),
}
}
unsafe fn ffi_set_convolution_nd_descriptor(
desc: cudnnConvolutionDescriptor_t,
data_type: cudnnDataType_t,
mode: cudnnConvolutionMode_t,
array_length: ::libc::c_int,
pad_a: *const ::libc::c_int,
filter_stride_a: *const ::libc::c_int,
upscale_a: *const ::libc::c_int,
) -> Result<(), Error> {
match cudnnSetConvolutionNdDescriptor(desc, array_length, pad_a, filter_stride_a, upscale_a, mode, data_type) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: `desc` is NULL. `array_length` is negative, `mode` or `data_type` is invalid, element of `pad_a` is negative, element of `stride_a` is negative or zero.")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `array_length` is greater than CUDNN_DIM_MAX. `upscale_a` contains an element different from 1.")),
status => Err(Error::Unknown("Unable to set CUDA cuDNN Convolution Descriptor.", status as i32 as u64)),
}
}
#[allow(clippy::too_many_arguments)]
unsafe fn ffi_convolution_forward(
handle: cudnnHandle_t,
alpha: *const ::libc::c_void,
src_desc: cudnnTensorDescriptor_t,
src_data: *const ::libc::c_void,
filter_desc: cudnnFilterDescriptor_t,
filter_data: *const ::libc::c_void,
conv_desc: cudnnConvolutionDescriptor_t,
algo: cudnnConvolutionFwdAlgo_t,
work_space: *mut ::libc::c_void,
work_size_in_bytes: ::libc::size_t,
beta: *const ::libc::c_void,
dest_desc: cudnnTensorDescriptor_t,
dest_data: *mut ::libc::c_void,
) -> Result<(), Error> {
let status = cudnnConvolutionForward(
handle,
alpha,
src_desc,
src_data,
filter_desc,
filter_data,
conv_desc,
algo,
work_space,
work_size_in_bytes,
beta,
dest_desc,
dest_data,
);
match status {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: At least one of the following is NULL: `handle`, `src_desc`, `filter_desc`, `conv_desc`, `dest_desc`, `src_data`, `alpha`, `beta`. `src_desc` and `dest_desc` have a non-matching number of dimensions. `src_desc` and `filter_desc` have a non-matching number of dimensions. `src_desc` has fewer than three number of dimensions. `src_desc`s number of dimensions is not equal to `conv_desc`s `array_length` + 2. `src_desc` and `filter_desc` have a non-matching number of input feature maps per image. `src_desc`, `filter_desc` and `dest_desc` have a non-matching data type. For some spatial dimension, `filter_desc` has a spatial size that is larger than the input spatial size (including zero-padding size).")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `src_desc` or `dest_desc` have negative tensor striding. `src_desc`, `filter_desc` or `dest_desc` has a number of dimensions that is not 4 or 5. The chosen algo does not support the parameters provided; see the reference for exhaustive list of parameter support for each algo")),
status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional forward.", status as i32 as u64)),
}
}
unsafe fn ffi_convolution_backward_bias(
handle: cudnnHandle_t,
alpha: *const ::libc::c_void,
src_desc: cudnnTensorDescriptor_t,
src_data: *const ::libc::c_void,
beta: *const ::libc::c_void,
dest_desc: cudnnTensorDescriptor_t,
dest_data: *mut ::libc::c_void,
) -> Result<(), Error> {
match cudnnConvolutionBackwardBias(handle, alpha, src_desc, src_data, beta, dest_desc, dest_data) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: One of the parameters n,h,w of the output tensor is not 1. The numbers of feature maps of the input tensor and output tensor differ. The dataType of the two tensor descriptors are different.")),
status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional backward bias.", status as i32 as u64)),
}
}
#[allow(clippy::too_many_arguments)]
unsafe fn ffi_convolution_backward_filter(
handle: cudnnHandle_t,
alpha: *const ::libc::c_void,
src_desc: cudnnTensorDescriptor_t,
src_data: *const ::libc::c_void,
diff_desc: cudnnTensorDescriptor_t,
diff_data: *const ::libc::c_void,
conv_desc: cudnnConvolutionDescriptor_t,
algo: cudnnConvolutionBwdFilterAlgo_t,
work_space: *mut ::libc::c_void,
work_size_in_bytes: ::libc::size_t,
beta: *const ::libc::c_void,
grad_desc: cudnnFilterDescriptor_t,
grad_data: *mut ::libc::c_void,
) -> Result<(), Error> {
match cudnnConvolutionBackwardFilter(handle, alpha, src_desc, src_data, diff_desc, diff_data, conv_desc, algo, work_space, work_size_in_bytes, beta, grad_desc, grad_data) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: At least one of the following is NULL: `handle`, `src_desc`, `diff_desc`, `conv_desc`, `grad_desc`, `src_data`, `diff_data`, `grad_data`, `alpha`, `beta`. `src_desc` and `diff_desc` have a non-matching number of dimensions. `src_desc` and `grad_desc` have a non-matching number of dimensions. `src_desc` has fewer than three number of dimensions. `src_desc`, `diff_desc` and `grad_desc` have a non-matching data type. `src_desc` and `grad_desc` have a non-matching number of input feature maps per image.")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `src_desc` or `diff_desc` have negative tensor striding. `src_desc`, `diff_desc` or `grad_desc` has a number of dimensions that is not 4 or 5. The chosen algo does not support the parameters provided; see the reference for exhaustive list of parameter support for each algo")),
cudnnStatus_t::CUDNN_STATUS_MAPPING_ERROR => Err(Error::MappingError("An error occurs during the texture binding of the filter data.")),
cudnnStatus_t::CUDNN_STATUS_EXECUTION_FAILED => Err(Error::ExecutionFailed("Execution failed to launch on GPU.")),
status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional backward filter.", status as i32 as u64)),
}
}
#[allow(clippy::too_many_arguments)]
unsafe fn ffi_convolution_backward_data(
handle: cudnnHandle_t,
alpha: *const ::libc::c_void,
filter_desc: cudnnFilterDescriptor_t,
filter_data: *const ::libc::c_void,
diff_desc: cudnnTensorDescriptor_t,
diff_data: *const ::libc::c_void,
conv_desc: cudnnConvolutionDescriptor_t,
algo: cudnnConvolutionBwdDataAlgo_t,
work_space: *mut ::libc::c_void,
work_size_in_bytes: ::libc::size_t,
beta: *const ::libc::c_void,
grad_desc: cudnnTensorDescriptor_t,
grad_data: *mut ::libc::c_void,
) -> Result<(), Error> {
match cudnnConvolutionBackwardData(handle, alpha, filter_desc, filter_data, diff_desc, diff_data, conv_desc, algo, work_space, work_size_in_bytes, beta, grad_desc, grad_data) {
cudnnStatus_t::CUDNN_STATUS_SUCCESS => Ok(()),
cudnnStatus_t::CUDNN_STATUS_BAD_PARAM => Err(Error::BadParam("At least one of the following conditions are met: At least one of the following is NULL: `handle`, `diff_desc`, `filter_desc`, `conv_desc`, `grad_desc`, `diff_data`, `filter_data`, `grad_data`, `alpha`, `beta`. `filter_desc` and `diff_desc` have a non-matching number of dimensions. `filter_desc` and `grad_desc` have a non-matching number of dimensions. `filter_desc has fewer than three number of dimensions. `filter_desc`, `grad_desc` and `diff_desc` have a non-matching data type. `filter_desc` and `grad_desc` have a non-matching number of input feature maps per image. `diff_desc`s spatial sizes do not match with the expected size as determined by `cudnnGetConvolutionNdForwardOutputDim()`.")),
cudnnStatus_t::CUDNN_STATUS_NOT_SUPPORTED => Err(Error::NotSupported("At least one of the following conditions are met: `diff_desc` or `grad_desc` have negative tensor striding. `diff_desc`, `filter_desc` or `grad_desc` has a number of dimensions that is not 4 or 5. The chosen algo does not support the parameters provided; see the reference for exhaustive list of parameter support for each algo")),
cudnnStatus_t::CUDNN_STATUS_MAPPING_ERROR => Err(Error::MappingError("An error occurs during the texture binding of the filter data or the input differential tensor data.")),
cudnnStatus_t::CUDNN_STATUS_EXECUTION_FAILED => Err(Error::ExecutionFailed("Execution failed to launch on GPU.")),
status => Err(Error::Unknown("Unable to compute CUDA cuDNN convolutional backward data.", status as i32 as u64)),
}
}
}