1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//! Contains some helper functions that can be useful and/or fun.

use crate::Rational;

/// Convenience method for constructing a simple `Rational`.
///
/// ## Example
/// ```rust
/// # use rational::{Rational, extras::*};
/// let one_half = r(1, 2);
/// assert_eq!(one_half, Rational::new(1, 2));
/// ```
pub fn r(n: i128, d: i128) -> Rational {
    Rational::new(n, d)
}

/// Calculate the greatest common divisor of two numbers using [Stein's algorithm](https://en.wikipedia.org/wiki/Binary_GCD_algorithm).
///
/// ## Panics
/// * If the result does not fit in the `i128` primitive type. This only happens in the cases below.
/// ```rust,no_run
///   # use rational::extras::*;
///   // both of these are equal to `i128::MAX + 1`, which does not fit in an `i128`
///   gcd(i128::MIN, 0);
///   gcd(0, i128::MIN);
///   gcd(i128::MIN, i128::MIN);
/// ```
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert_eq!(gcd(9, 60), 3);
/// assert_eq!(gcd(899, 957), 29);
/// assert_eq!(gcd(-899, 957), 29);
/// ```
pub fn gcd(mut a: i128, mut b: i128) -> i128 {
    if a == 0 || b == 0 {
        return return_gcd(a, b, a | b);
    }

    let factors_of_two = (a | b).trailing_zeros();

    if a == i128::MIN || b == i128::MIN {
        return return_gcd(a, b, 1 << factors_of_two);
    }

    a = a.abs() >> a.trailing_zeros();
    b = b.abs() >> b.trailing_zeros();

    while a != b {
        if a > b {
            a -= b;
            a >>= a.trailing_zeros();
        } else {
            b -= a;
            b >>= b.trailing_zeros();
        }
    }
    a << factors_of_two
}

fn return_gcd(a: i128, b: i128, g: i128) -> i128 {
    if g == i128::MIN {
        panic!("the gcd of {} and {} is equal to i128::MAX+1, which does not fit in the i128 primitive type", a, b)
    } else {
        g.abs()
    }
}

/// Calculate the least common multiple of two numbers.
///
/// ## Panics
/// * If overflow occurred
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert_eq!(lcm(6, 8), 24);
/// assert_eq!(lcm(-6, 8), 24);
/// ```
pub fn lcm(a: i128, b: i128) -> i128 {
    let g = gcd(a, b);
    a.abs() * (b.abs() / g)
}

/// Calculate the least common multiple of two numbers, raturning `None` if overflow occurred.
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert_eq!(lcm_checked(6, 8), Some(24));
/// assert_eq!(lcm_checked(-6, 8), Some(24));
/// assert_eq!(lcm_checked(i128::MAX, i128::MAX - 1), None);
/// ```
pub fn lcm_checked(a: i128, b: i128) -> Option<i128> {
    let g = gcd(a, b);
    a.abs().checked_mul(b.abs().checked_div(g)?)
}

/// Checks if `l` and `r` are [coprime](https://en.wikipedia.org/wiki/Coprime_integers). Shorthand for `gcd(l, r) == 1`.
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert!(is_coprime(8, 9));
/// assert!(is_coprime(7, 9));
/// assert!(!is_coprime(6, 9));
/// assert!(is_coprime(-1, 1));
/// ```
pub fn is_coprime(l: i128, r: i128) -> bool {
    gcd(l, r) == 1
}

/// Create a [continued fraction](https://en.wikipedia.org/wiki/Continued_fraction#Motivation_and_notation).
///
/// ## Notes
/// The size of the numerator and denominator can grow quite quickly with increased lengths of `cont`,
/// so be careful with integer overflow. If `cont` is empty, then the resulting `Rational` will be equal to `init`.
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// // to create a rational number that estimates the mathematical constant `e` (~2.7182818...)
/// // we can use the continued fraction [2;1,2,1,1,4,1,1,6,1,1,8]
/// let e = continued_fraction(2, &[1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]);
/// assert!((e.decimal_value() - std::f64::consts::E).abs() < 0.0000001);
/// ```
pub fn continued_fraction(init: u64, cont: &[u64]) -> Rational {
    let mut r = Rational::new(0, 1);

    for &d in cont.iter().rev() {
        r = Rational::new(1, r + d);
    }

    r + init
}

pub fn continued_fraction_iter(init: u64, cont: &[u64]) -> ContinuedFractionIter {
    ContinuedFractionIter::new(Rational::new(init, 1), cont)
}

pub struct ContinuedFractionIter<'a> {
    init: Rational,
    fraction: Rational,
    idx: usize,
    cont: &'a [u64],
}

impl<'a> ContinuedFractionIter<'a> {
    fn new(init: Rational, cont: &'a [u64]) -> Self {
        Self {
            init,
            fraction: Rational::zero(),
            idx: 0,
            cont,
        }
    }

    pub fn decimals(self) -> impl Iterator<Item = f64> + 'a {
        self.map(|r| r.decimal_value())
    }
}

impl Iterator for ContinuedFractionIter<'_> {
    type Item = Rational;

    fn next(&mut self) -> Option<Self::Item> {
        if self.cont.is_empty() {
            if self.idx == 0 {
                self.idx += 1;
                Some(self.init)
            } else {
                None
            }
        } else if self.idx > self.cont.len() {
            None
        } else if self.idx == self.cont.len() {
            self.idx += 1;
            Some(self.init + self.fraction)
        } else {
            let curr = self.init + self.fraction;
            self.fraction =
                Rational::new(1, self.fraction + self.cont[self.cont.len() - self.idx - 1]);
            self.idx += 1;
            Some(curr)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn gcd_test() {
        let eq = |a: i128, b: i128, g: i128| assert_eq!(gcd(a, b), g, "a: {}, b: {}", a, b);
        eq(1, 2, 1);
        eq(5, 4, 1);
        eq(12, 4, 4);
        eq(-74, 44, 2);
        eq(-2, -4, 2);
        eq(i128::MIN, 1, 1);
    }

    #[test]
    #[should_panic]
    fn gcd_should_panic_test_1() {
        dbg!(gcd(i128::MIN, 0));
    }

    #[test]
    #[should_panic]
    fn gcd_should_panic_test_2() {
        dbg!(gcd(0, i128::MIN));
    }

    #[test]
    #[should_panic]
    fn gcd_should_panic_test_3() {
        dbg!(gcd(i128::MIN, i128::MIN));
    }

    #[test]
    fn lcm_test() {
        assert_eq!(lcm(2, 6), 6);
        assert_eq!(lcm(1, 6), 6);
    }

    #[test]
    fn repeated_test() {
        use std::f64::consts::*;
        let assert = |init: u64, cont: &[u64], expected: f64| {
            let actual = continued_fraction(init, cont).decimal_value();
            assert!(
                (actual - expected).abs() < 0.000000001,
                "actual: {}, expected: {}",
                actual,
                expected
            );
        };

        assert(1, &[2; 15], 2.0_f64.sqrt());
        assert(1, &[1; 100], 1.6180339887498);
        assert(4, &[2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8], 19.0_f64.sqrt());
        assert(1, &[], 1.0);
        assert(4, &[], 4.0);
        assert(2, &[1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10], E);
        assert(3, &[7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1], PI);
    }

    #[test]
    fn continued_fraction_iter_test() {
        let decimal_approx: Vec<_> = continued_fraction_iter(2, &[1, 2, 1, 1, 4, 1, 1, 6])
            .decimals()
            .collect();
        assert_eq!(
            decimal_approx,
            vec![
                2.0,
                2.1666666666666665,
                2.857142857142857,
                2.5384615384615383,
                2.2203389830508473,
                2.8194444444444446,
                2.549618320610687,
                2.3922155688622753,
                2.718279569892473,
            ]
        );
    }
}