1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
//! Contains some helper functions that can be useful and/or fun.
use crate::Rational;
/// Convenience method for constructing a simple `Rational`.
///
/// ## Example
/// ```rust
/// # use rational::{Rational, extras::*};
/// let one_half = r(1, 2);
/// assert_eq!(one_half, Rational::new(1, 2));
/// ```
pub fn r(n: i128, d: i128) -> Rational {
Rational::new(n, d)
}
/// Calculate the greatest common divisor of two numbers using [Stein's algorithm](https://en.wikipedia.org/wiki/Binary_GCD_algorithm).
///
/// ## Panics
/// * If the result does not fit in the `i128` primitive type. This only happens in the cases below.
/// ```rust,no_run
/// # use rational::extras::*;
/// // both of these are equal to `i128::MAX + 1`, which does not fit in an `i128`
/// gcd(i128::MIN, 0);
/// gcd(0, i128::MIN);
/// gcd(i128::MIN, i128::MIN);
/// ```
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert_eq!(gcd(9, 60), 3);
/// assert_eq!(gcd(899, 957), 29);
/// assert_eq!(gcd(-899, 957), 29);
/// ```
pub fn gcd(mut a: i128, mut b: i128) -> i128 {
if a == 0 || b == 0 {
return return_gcd(a, b, a | b);
}
let factors_of_two = (a | b).trailing_zeros();
if a == i128::MIN || b == i128::MIN {
return return_gcd(a, b, 1 << factors_of_two);
}
a = a.abs() >> a.trailing_zeros();
b = b.abs() >> b.trailing_zeros();
while a != b {
if a > b {
a -= b;
a >>= a.trailing_zeros();
} else {
b -= a;
b >>= b.trailing_zeros();
}
}
a << factors_of_two
}
fn return_gcd(a: i128, b: i128, g: i128) -> i128 {
if g == i128::MIN {
panic!("the gcd of {} and {} is equal to i128::MAX+1, which does not fit in the i128 primitive type", a, b)
} else {
g.abs()
}
}
/// Calculate the least common multiple of two numbers.
///
/// ## Panics
/// * If overflow occurred
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert_eq!(lcm(6, 8), 24);
/// assert_eq!(lcm(-6, 8), 24);
/// ```
pub fn lcm(a: i128, b: i128) -> i128 {
let g = gcd(a, b);
a.abs() * (b.abs() / g)
}
/// Calculate the least common multiple of two numbers, raturning `None` if overflow occurred.
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert_eq!(lcm_checked(6, 8), Some(24));
/// assert_eq!(lcm_checked(-6, 8), Some(24));
/// assert_eq!(lcm_checked(i128::MAX, i128::MAX - 1), None);
/// ```
pub fn lcm_checked(a: i128, b: i128) -> Option<i128> {
let g = gcd(a, b);
a.abs().checked_mul(b.abs().checked_div(g)?)
}
/// Checks if `l` and `r` are [coprime](https://en.wikipedia.org/wiki/Coprime_integers). Shorthand for `gcd(l, r) == 1`.
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// assert!(is_coprime(8, 9));
/// assert!(is_coprime(7, 9));
/// assert!(!is_coprime(6, 9));
/// assert!(is_coprime(-1, 1));
/// ```
pub fn is_coprime(l: i128, r: i128) -> bool {
gcd(l, r) == 1
}
/// Create a [continued fraction](https://en.wikipedia.org/wiki/Continued_fraction#Motivation_and_notation).
///
/// ## Notes
/// The size of the numerator and denominator can grow quite quickly with increased lengths of `cont`,
/// so be careful with integer overflow. If `cont` is empty, then the resulting `Rational` will be equal to `init`.
///
/// ## Example
/// ```rust
/// # use rational::extras::*;
/// // to create a rational number that estimates the mathematical constant `e` (~2.7182818...)
/// // we can use the continued fraction [2;1,2,1,1,4,1,1,6,1,1,8]
/// let e = continued_fraction(2, &[1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]);
/// assert!((e.decimal_value() - std::f64::consts::E).abs() < 0.0000001);
/// ```
pub fn continued_fraction(init: u64, cont: &[u64]) -> Rational {
let mut r = Rational::new(0, 1);
for &d in cont.iter().rev() {
r = Rational::new(1, r + d);
}
r + init
}
pub fn continued_fraction_iter(init: u64, cont: &[u64]) -> ContinuedFractionIter {
ContinuedFractionIter::new(Rational::new(init, 1), cont)
}
pub struct ContinuedFractionIter<'a> {
init: Rational,
fraction: Rational,
idx: usize,
cont: &'a [u64],
}
impl<'a> ContinuedFractionIter<'a> {
fn new(init: Rational, cont: &'a [u64]) -> Self {
Self {
init,
fraction: Rational::zero(),
idx: 0,
cont,
}
}
pub fn decimals(self) -> impl Iterator<Item = f64> + 'a {
self.map(|r| r.decimal_value())
}
}
impl Iterator for ContinuedFractionIter<'_> {
type Item = Rational;
fn next(&mut self) -> Option<Self::Item> {
if self.cont.is_empty() {
if self.idx == 0 {
self.idx += 1;
Some(self.init)
} else {
None
}
} else if self.idx > self.cont.len() {
None
} else if self.idx == self.cont.len() {
self.idx += 1;
Some(self.init + self.fraction)
} else {
let curr = self.init + self.fraction;
self.fraction =
Rational::new(1, self.fraction + self.cont[self.cont.len() - self.idx - 1]);
self.idx += 1;
Some(curr)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn gcd_test() {
let eq = |a: i128, b: i128, g: i128| assert_eq!(gcd(a, b), g, "a: {}, b: {}", a, b);
eq(1, 2, 1);
eq(5, 4, 1);
eq(12, 4, 4);
eq(-74, 44, 2);
eq(-2, -4, 2);
eq(i128::MIN, 1, 1);
}
#[test]
#[should_panic]
fn gcd_should_panic_test_1() {
dbg!(gcd(i128::MIN, 0));
}
#[test]
#[should_panic]
fn gcd_should_panic_test_2() {
dbg!(gcd(0, i128::MIN));
}
#[test]
#[should_panic]
fn gcd_should_panic_test_3() {
dbg!(gcd(i128::MIN, i128::MIN));
}
#[test]
fn lcm_test() {
assert_eq!(lcm(2, 6), 6);
assert_eq!(lcm(1, 6), 6);
}
#[test]
fn repeated_test() {
use std::f64::consts::*;
let assert = |init: u64, cont: &[u64], expected: f64| {
let actual = continued_fraction(init, cont).decimal_value();
assert!(
(actual - expected).abs() < 0.000000001,
"actual: {}, expected: {}",
actual,
expected
);
};
assert(1, &[2; 15], 2.0_f64.sqrt());
assert(1, &[1; 100], 1.6180339887498);
assert(4, &[2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8], 19.0_f64.sqrt());
assert(1, &[], 1.0);
assert(4, &[], 4.0);
assert(2, &[1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10], E);
assert(3, &[7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1], PI);
}
#[test]
fn continued_fraction_iter_test() {
let decimal_approx: Vec<_> = continued_fraction_iter(2, &[1, 2, 1, 1, 4, 1, 1, 6])
.decimals()
.collect();
assert_eq!(
decimal_approx,
vec![
2.0,
2.1666666666666665,
2.857142857142857,
2.5384615384615383,
2.2203389830508473,
2.8194444444444446,
2.549618320610687,
2.3922155688622753,
2.718279569892473,
]
);
}
}