rasusa 0.6.1

Randomly subsample reads to a specified coverage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
![rasusa](img/logo.png)

[![Build Status](https://github.com/mbhall88/rasusa/actions/workflows/rust-ci.yaml/badge.svg?branch=master)](https://github.com/mbhall88/rasusa/actions/workflows/rust-ci.yaml)
[![codecov](https://codecov.io/gh/mbhall88/rasusa/branch/master/graph/badge.svg)](https://codecov.io/gh/mbhall88/rasusa)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![github release version](https://img.shields.io/github/v/release/mbhall88/rasusa)](https://github.com/mbhall88/rasusa/releases)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3546168.svg)](https://doi.org/10.5281/zenodo.3546168)

**Ra**ndomly **su**b**sa**mple sequencing reads to a specified coverage.

[TOC]: #
## Table of Contents
- [Motivation]#motivation
- [Install]#install
  - [`cargo`]#cargo
  - [`conda`]#conda
  - [Container]#container
  - [`homebrew`]#homebrew
  - [Release binaries]#release-binaries
  - [Build locally]#build-locally
- [Usage]#usage
  - [Basic usage]#basic-usage
  - [Required parameters]#required-parameters
  - [Optional parameters]#optional-parameters
  - [Full usage]#full-usage
  - [Snakemake]#snakemake
- [Benchmark]#benchmark
  - [Single long read input]#single-long-read-input
  - [Paired-end input]#paired-end-input
- [Contributing]#contributing
- [Citing]#citing
  - [Bibtex]#bibtex

## Motivation

I couldn't find a tool for subsampling reads that met my requirements. All the
strategies I could find fell short as they either just wanted a number or percentage of
reads to subsample to or, if they did subsample to a coverage, they assume all reads are
the same size (i.e Illumina). As I mostly work with long-read data this posed a problem
if I wanted to subsample a file to certain coverage, as length of reads was never taken
into account. `rasusa` addresses this shortcoming.

A workaround I had been using for a while was using [`filtlong`][filtlong]. It was
simple enough, I just figure out the number of bases I need to achieve a (theoretical)
coverage for my sample. Say I have a fastq from an _E. coli_ sample with 5 million reads
and I want to subset it to 50x coverage. I just need to multiply the expected size of
the sample's genome, 4.6 million base pairs, by the coverage I want and I have my target
bases - 230 million base pairs. In `filtlong`, I can do the following

```sh
target=230000000
filtlong --target_bases "$target" reads.fq > reads.50x.fq
```

However, this is technically not the intended function of `filtlong`; it's a quality
filtering tool. What you get in the end is a subset of the ["highest scoring"][score]
reads at a (theoretical) coverage of 50x. Depending on your circumstances, this might be
what you want. However, you bias yourself towards the best/longest reads in the dataset
\- not a fair representation of your dataset as a whole. There is also the possibility
of favouring regions of the genome that produce longer/higher quality reads. [De Maio
_et al._][mgen-ref] even found that by randomly subsampling nanopore reads you achieve
_better_ genome assemblies than if you had filtered.

So, depending on your circumstances, an unbiased subsample of your reads might be what
you need. And if this is the case, `rasusa` has you covered.

## Install

Some of these installation options require the [`rust` toolchain][rust], which is
extremely easy to set up. However, if you do not wish to install `rust` then there are a
number of options available.

### `cargo`

[![Crates.io](https://img.shields.io/crates/v/rasusa.svg)](https://crates.io/crates/rasusa)

Prerequisite: [`rust` toolchain][rust] (min. v1.53.0)

```sh
cargo install rasusa
```

### `conda`

[![Conda (channel only)](https://img.shields.io/conda/vn/bioconda/rasusa)](https://anaconda.org/bioconda/rasusa)
[![bioconda version](https://anaconda.org/bioconda/rasusa/badges/platforms.svg)](https://anaconda.org/bioconda/rasusa)

Prerequisite: [`conda`][conda] (and bioconda channel [correctly set up][channels])

```sh
conda install rasusa
```

Thank you to Devon Ryan ([@dpryan79][dpryan79]) for [help debugging the bioconda
recipe][pr-help].

### Container

Docker images are hosted at [quay.io]. For versions 0.3.0 and earlier, the images were
hosted on [Dockerhub][dockerhub].

#### `singularity`

Prerequisite: [`singularity`][singularity]

```sh
URI="docker://quay.io/mbhall88/rasusa"
singularity exec "$URI" rasusa --help
```

The above will use the latest version. If you want to specify a version then use a
[tag][quay.io] (or commit) like so.

```sh
VERSION="0.6.1"
URI="docker://quay.io/mbhall88/rasusa:${VERSION}"
```

#### `docker`

[![Docker Repository on Quay](https://quay.io/repository/mbhall88/rasusa/status "Docker Repository on Quay")](https://quay.io/repository/mbhall88/rasusa)

Prerequisite: [`docker`][docker]

```sh
docker pull quay.io/mbhall88/rasusa
docker run quay.io/mbhall88/rasusa --help
```

You can find all the available tags on the [quay.io repository][quay.io]. Note: versions
prior to 0.4.0 were housed on [Docker Hub](https://hub.docker.com/r/mbhall88/rasusa).


### `homebrew`

Prerequisite: [`homebrew`][homebrew]

The `homebrew` installation is done via the [homebrew-bio tap][brew-tap].

```sh
brew tap brewsci/bio
brew install rasusa
```

or

```sh
brew install brewsci/bio/rasusa
```

### Release binaries

**tl;dr**: Run the following snippet to download the binary for your system to the
current directory and show the help menu.

```shell
VERSION="0.6.1"  # change accordingly
OS=$(uname -s)                                                                                                       
if [ "$OS" = "Linux" ]; then                                                                                         
    triple="x86_64-unknown-linux-musl"                                                                              
elif [ "$OS" = "Darwin" ]; then                                                                                        
    triple="x86_64-apple-darwin"                                                         
else                                                      
    echo "ERROR: $OS not a recognised operating system"
fi              
if [ -n "$triple" ]; then   
    URL="https://github.com/mbhall88/rasusa/releases/download/${VERSION}/rasusa-${VERSION}-${triple}.tar.gz"
    wget "$URL" -O - | tar -xzf -
    ./rasusa --help             
fi
```

These binaries _do not_ require that you have the `rust` toolchain installed.

Currently, there are two pre-compiled binaries available:
- Linux kernel `x86_64-unknown-linux-musl` (works on most Linux distributions I tested)
- OSX kernel `x86_64-apple-darwin` (works for any post-2007 Mac)

If these binaries do not work on your system please raise an issue and I will
potentially add some additional [target triples][triples].

### Build locally

Prerequisite: [`rust` toolchain][rust]

```sh
git clone https://github.com/mbhall88/rasusa.git
cd rasusa
cargo build --release
target/release/rasusa --help
# if you want to check everything is working ok
cargo test --all
```


## Usage

### Basic usage

```
rasusa --input in.fq --coverage 30 --genome-size 4.6mb
```

The above command will output the subsampled file to `stdout`.

Or, if you have paired Illumina

```
rasusa -i r1.fq -i r2.fq --coverage 30 --genome-size 4g -o out.r1.fq -o out.r2.fq
```

For more details on the above options, and additional options, see below.

### Required parameters

There are three required options to run `rasusa`.

#### Input

##### `-i`, `--input`

This option specifies the file(s) containing the reads you would like to subsample. The
file(s) must be valid fasta or fastq format and can be compressed (with a tool such as
`gzip`).  
Illumina paired files can be passed in two ways.
1. Using `--input` twice `-i r1.fq -i r2.fq`
2. Using `--input` once, but passing both files immediately after `-i r1.fq r2.fq`

> Bash wizard tip 🧙: Let globs do the work for you `-i r*.fq`

#### Coverage

##### `-c`, `--coverage`

> Not required if [`--bases`]#target-number-of-bases is present

This option is used to determine the minimum coverage to subsample the reads to. It can
be specified as an integer (100), a decimal/float (100.7), or either of the previous
suffixed with an 'x' (100x).

_**Note**: Due to the method for determining how many bases are required to achieve the
desired coverage, the actual coverage, in the end, could be slightly higher than
requested. For example, if the last included read is very long. The log messages should
inform you of the actual coverage in the end._

#### Genome size

##### `-g`, `--genome-size`

> Not required if [`--bases`]#target-number-of-bases is present

The genome size of the input is also required. It is used to determine how many bases
are necessary to achieve the desired coverage. This can, of course, be as precise or
rough as you like.  
Genome size can be passed in many ways. As a plain old integer (1600), or with a metric
suffix (1.6kb). All metric suffixes can have an optional 'b' suffix and be lower, upper,
or mixed case. So 'Kb', 'kb' and 'k' would all be inferred as 'kilo'. Valid metric
suffixes include:

- Base (b) - multiplies by 1
- Kilo (k) - multiplies by 1,000
- Mega (m) - multiplies by 1,000,000
- Giga (g) - multiplies by 1,000,000,000
- Tera (t) - multiplies by 1,000,000,000,000

Alternatively, a [FASTA/Q index file][faidx] can be given and the genome size will be
set to the sum of all reference sequences in it.

[faidx]: https://www.htslib.org/doc/faidx.html

### Optional parameters

#### Output

##### `-o`, `--output`

NOTE: This parameter is required if passing paired Illumina data.

By default, `rasusa` will output the subsampled file to `stdout` (if one file is given).
If you would prefer to specify an output file path, then use this option.

Output for Illumina paired files can be specified in the same manner as
[`--input`](#input)
1. Using `--output` twice `-o out.r1.fq -o out.r2.fq`
2. Using `--output` once, but passing both files immediately after `-o out.r1.fq
   out.r2.fq`

The ordering of the output files is assumed to be the same as the input.  
_Note: The output will always be in the same format as the input. You cannot pass fastq
as input and ask for fasta as output._

`rasusa` will also attempt to automatically infer whether comression of the output
file(s) is required. It does this by detecting any of the supported extensions:
- `.gz`: will compress the output with [`gzip`][gzip]
- `.bz` or `.bz2`: will compress the output with [`bzip2`][bzip]
- `.lzma`: will compress the output with the [`xz`][xz] LZMA algorithm

[gzip]: http://www.gzip.org/
[bzip]: https://sourceware.org/bzip2/
[xz]: https://tukaani.org/xz/

#### Output compression format

##### `-O`, `--output-type`

Use this option to manually set the compression algoritm to use for the output file(s).
It will override any format automatically detected from the output path.

Valid options are:
- `g`: [`gzip`][gzip]
- `b`: [`bzip2`][bzip]
- `l`: [`xz`][xz] LZMA algorithm
- `u`: no compression

*Note: these options are case insensitive.*

#### Compresion level

##### `-l`, `--compress-level`

Compression level to use if compressing the output. 1 is for fastest/least compression
and 9 is for slowest/best. By default this is set to 6, which is also the default for
most compression programs.

#### Target number of bases

##### `-b`, `--bases`

Explicitly set the number of bases required in the subsample. This option takes the
number in the same format as [genome size](#genome-size).

*Note: if this option is given, genome size and coverage are not required, or ignored if
they are provided.*

#### Random seed

##### `-s`, `--seed`

This option allows you to specify the [random seed][seed] used by the random subsampler.
By explicitly setting this parameter, you make the subsample for the input reproducible.
The seed is an integer, and by default it is not set, meaning the operating system will
seed the random subsampler. You should only pass this parameter if you are likely to
want to subsample the same input file again in the future and want the same subset of
reads.

#### Verbosity

##### `-v`

Adding this optional flag will make the logging more verbose. By default, logging will
produce messages considered "info" or above (see [here][log-lvl] for more details). If
verbosity is switched on, you will additionally get "debug" level logging messages.

### Full usage

```text
$ rasusa --help

rasusa 0.6.1
Randomly subsample reads to a specified coverage.

USAGE:
    rasusa [FLAGS] [OPTIONS] --bases <bases> --coverage <FLOAT> --genome-size <size|faidx> --input <input>...

FLAGS:
    -h, --help
            Prints help information

    -V, --version
            Prints version information

    -v
            Switch on verbosity.


OPTIONS:
    -b, --bases <bases>
            Explicitly set the number of bases required e.g., 4.3kb, 7Tb, 9000, 4.1MB

            If this option is given, --coverage and --genome-size are ignored
    -l, --compress-level <1-9>
            Compression level to use if compressing output [default: 6]

    -c, --coverage <FLOAT>
            The desired coverage to sub-sample the reads to

            If --bases is not provided, this option and --genome-size are required
    -g, --genome-size <size|faidx>
            Genome size to calculate coverage with respect to. e.g., 4.3kb, 7Tb, 9000, 4.1MB

            Alternatively, a path to a FASTA/Q index file can be provided and the genome size will be set to the sum of
            all reference sequences.

            If --bases is not provided, this option and --coverage are required
    -i, --input <input>...
            The fast{a,q} file(s) to subsample.

            For paired Illumina you may either pass this flag twice `-i r1.fq -i r2.fq` or give two files consecutively
            `-i r1.fq r2.fq`.
    -o, --output <output>...
            Output filepath(s); stdout if not present.

            For paired Illumina you may either pass this flag twice `-o o1.fq -o o2.fq` or give two files consecutively
            `-o o1.fq o2.fq`. NOTE: The order of the pairs is assumed to be the same as that given for --input. This
            option is required for paired input.
    -O, --output-type <u|b|g|l>
            u: uncompressed; b: Bzip2; g: Gzip; l: Lzma

            Rasusa will attempt to infer the output compression format automatically from the filename extension. This
            option is used to override that. If writing to stdout, the default is uncompressed
    -s, --seed <INT>
            Random seed to use.
```

### Snakemake

If you want to use `rasusa` in a [`snakemake`][snakemake] pipeline, it is advised to use
the [wrapper][wrapper].

```py
rule subsample:
    input:
        r1="{sample}.r1.fq",
        r2="{sample}.r2.fq",
    output:
        r1="{sample}.subsampled.r1.fq",
        r2="{sample}.subsampled.r2.fq",
    params:
        options="--seed 15",  # optional
        genome_size="3mb",  # required
        coverage=20,  # required
    log:
        "logs/subsample/{sample}.log",
    wrapper:
        "0.70.0/bio/rasusa"
```

*See the [latest wrapper][wrapper] documentation for the most up-to-date version
number.*

## Benchmark

> “Time flies like an arrow; fruit flies like a banana.”  
> ― Anthony G. Oettinger

The real question is: will `rasusa` just needlessly eat away at your precious time on
earth?

To do this benchmark, I am going to use [hyperfine][hyperfine].

The data I used comes from

> [Bainomugisa, Arnold, et al. "A complete high-quality MinION nanopore assembly of an
> extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain
> identifies novel variation in repetitive PE/PPE gene regions." Microbial genomics 4.7
> (2018).][1]

### Single long read input

Download and rename the fastq

```shell
URL="ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR649/008/SRR6490088/SRR6490088_1.fastq.gz"
wget "$URL" -O - | gzip -d -c > tb.fq
```

The file size is 2.9G, and it has 379,547 reads.  
We benchmark against `filtlong` using the same strategy outlined in
[Motivation](#motivation).

```shell
TB_GENOME_SIZE=4411532
COVG=50
TARGET_BASES=$(( TB_GENOME_SIZE * COVG ))
FILTLONG_CMD="filtlong --target_bases $TARGET_BASES tb.fq"
RASUSA_CMD="rasusa -i tb.fq -c $COVG -g $TB_GENOME_SIZE -s 1"
hyperfine --warmup 3 --runs 10 --export-markdown results-single.md \
     "$FILTLONG_CMD" "$RASUSA_CMD" 
```

#### Results

| Command                                   |       Mean [s] | Min [s] | Max [s] |     Relative |
|:------------------------------------------|---------------:|--------:|--------:|-------------:|
| `filtlong --target_bases 220576600 tb.fq` | 21.685 ± 0.055 |  21.622 |  21.787 | 21.77 ± 0.29 |
| `rasusa -i tb.fq -c 50 -g 4411532 -s 1`   | 0.996 ±  0.013 |   0.983 |   1.023 |         1.00 |

**Summary**: `rasusa` ran 21.77 ± 0.29 times faster than `filtlong`.

### Paired-end input

Download and then deinterleave the fastq with [`pyfastaq`][pyfastaq]

```shell
URL="ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR648/008/SRR6488968/SRR6488968.fastq.gz"
wget "$URL" -O - | gzip -d -c - | fastaq deinterleave - r1.fq r2.fq
```

Each file's size is 179M and has 283,590 reads.  
For this benchmark, we will use [`seqtk`][seqtk]. As `seqtk` requires a fixed number of
reads to subsample to, I ran `rasusa` initially and got the number of reads it was using
for its subsample. We will also test `seqtk`'s 2-pass mode as this is analogous to
`rasusa`.  
We use a lower coverage for the Illumina as the samples only have ~38x coverage.

```shell
TB_GENOME_SIZE=4411532
COVG=20
NUM_READS=147052
SEQTK_CMD_1="seqtk sample -s 1 r1.fq $NUM_READS > /tmp/r1.fq; seqtk sample -s 1 r2.fq $NUM_READS > /tmp/r2.fq;"
SEQTK_CMD_2="seqtk sample -2 -s 1 r1.fq $NUM_READS > /tmp/r1.fq; seqtk sample -2 -s 1 r2.fq $NUM_READS > /tmp/r2.fq;"
RASUSA_CMD="rasusa -i r1.fq r2.fq -c $COVG -g $TB_GENOME_SIZE -s 1 -o /tmp/r1.fq -o /tmp/r2.fq"
hyperfine --warmup 5 --runs 20 --export-markdown results-paired.md \
     "$SEQTK_CMD_1" "$SEQTK_CMD_2" "$RASUSA_CMD"
```

#### Results

| Command                                                                                           |    Mean [ms] | Min [ms] | Max [ms] |    Relative |
|:--------------------------------------------------------------------------------------------------|-------------:|---------:|---------:|------------:|
| `seqtk sample -s 1 r1.fq 147052 > /tmp/r1.fq; seqtk sample -s 1 r2.fq 147052 > /tmp/r2.fq;`       | 693.8 ± 17.4 |    678.8 |    780.5 | 1.21 ± 0.19 |
| `seqtk sample -2 -s 1 r1.fq 147052 > /tmp/r1.fq; seqtk sample -2 -s 1 r2.fq 147052 > /tmp/r2.fq;` | 739.5 ± 28.4 |    695.6 |    811.8 | 1.29 ± 0.20 |
| `./rasusa -i r1.fq r2.fq -c 20 -g 4411532 -s 1 -o /tmp/r1.fq -o /tmp/r2.fq`                       | 574.7 ± 88.1 |    432.3 |    784.4 |        1.00 |

**Summary**: `rasusa` ran 1.21 times faster than `seqtk` (1-pass) and 1.29 times faster
than `seqtk` (2-pass)

So, `rasusa` is faster than `seqtk` but doesn't require a fixed number of reads -
allowing you to avoid doing maths to determine how many reads you need to downsample to
a specific coverage. 🤓

## Contributing

If you would like to help improve `rasusa` you are very welcome!

For changes to be accepted, they must pass the CI and coverage checks. These include:

- Code is formatted with `rustfmt`. This can be done by running `cargo fmt` in the
  project directory.
- There are no compiler errors/warnings. You can check this by running `cargo clippy
  --all-features --all-targets -- -D warnings`
- Code coverage has not reduced. If you want to check coverage before pushing changes, I
  use [`kcov`][kcov].

## Citing

If you use `rasusa` in your research, it would be very much appreciated if you could
cite it.

[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3731394.svg)](https://doi.org/10.5281/zenodo.3731394)

> Hall, Michael B. Rasusa: Randomly subsample sequencing reads to a specified coverage.
> (2019). doi:10.5281/zenodo.3731394

### Bibtex

```Bibtex
@article{
    rasusa2019,
    title={Rasusa: Randomly subsample sequencing reads to a specified coverage},
    DOI={10.5281/zenodo.3731394},
    publisher={Zenodo},
    author={Hall, Michael B.},
    year={2019},
    month={Nov}
}
```

[1]: https://doi.org/10.1099/mgen.0.000188
[brew-tap]: https://github.com/brewsci/homebrew-bio
[channels]: https://bioconda.github.io/user/install.html#set-up-channels
[conda]: https://docs.conda.io/projects/conda/en/latest/user-guide/install/
[docker]: https://docs.docker.com/v17.12/install/
[dockerhub]: https://hub.docker.com/r/mbhall88/rasusa
[dpryan79]: https://github.com/dpryan79
[filtlong]: https://github.com/rrwick/Filtlong
[homebrew]: https://docs.brew.sh/Installation
[hyperfine]: https://github.com/sharkdp/hyperfine
[kcov]: https://github.com/SimonKagstrom/kcov
[log-lvl]: https://docs.rs/log/0.4.6/log/enum.Level.html#variants
[mgen-ref]: https://doi.org/10.1099/mgen.0.000294
[pr-help]: https://github.com/bioconda/bioconda-recipes/pull/18690
[pyfastaq]: https://github.com/sanger-pathogens/Fastaq
[quay.io]: https://quay.io/repository/mbhall88/rasusa
[rust]: https://www.rust-lang.org/tools/install
[score]: https://github.com/rrwick/Filtlong#read-scoring
[seed]: https://en.wikipedia.org/wiki/Random_seed
[seqtk]: https://github.com/lh3/seqtk
[singularity]: https://sylabs.io/guides/3.4/user-guide/quick_start.html#quick-installation-steps
[snakemake]: https://snakemake.readthedocs.io/en/stable/
[triples]: https://clang.llvm.org/docs/CrossCompilation.html#target-triple
[wrapper]: https://snakemake-wrappers.readthedocs.io/en/stable/wrappers/rasusa.html