1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
use std::ops::Mul;
use geo_types::{Coord, Rect};
use crate::error::Error;
/// Affine Geotransform
///
/// Ported from [affine library](https://github.com/sgillies/affine/blob/master/affine/__init__.py) (used by rasterio).
///
/// `a`, `b`, `c`, `d`, `e` and `f` are typed as `f64` and are coefficients of an augmented affine
/// transformation matrix:
///
/// ```text
/// | x' | | a b c | | x |
/// | y' | = | d e f | | y |
/// | 1 | | 0 0 1 | | 1 |
/// ```
///
/// `a`, `b`, and `c` are the elements of the first row of the matrix. `d`, `e`, and `f` are the elements of the second row.
///
/// Other sources:
/// * [GDAL geotransform](https://gdal.org/tutorials/geotransforms_tut.html)
/// * [rasterio 1.0+ vs. GDAL](https://rasterio.readthedocs.io/en/latest/topics/migrating-to-v1.html#affine-affine-vs-gdal-style-geotransforms)
///
#[derive(Clone, PartialEq, Debug)]
pub struct Transform {
a: f64,
b: f64,
c: f64,
d: f64,
e: f64,
f: f64,
}
impl Transform {
#![allow(clippy::many_single_char_names)]
pub const fn new(a: f64, b: f64, c: f64, d: f64, e: f64, f: f64) -> Self {
Self { a, b, c, d, e, f }
}
/// Construct from an f64 array in the ordering used by [rasterio](https://github.com/rasterio/rasterio/).
pub const fn from_rasterio(transform: &[f64; 6]) -> Self {
Self::new(
transform[0],
transform[1],
transform[2],
transform[3],
transform[4],
transform[5],
)
}
/// Construct from an f64 array in the ordering used by [GDAL](https://gdal.org/).
pub const fn from_gdal(transform: &[f64; 6]) -> Self {
Self::new(
transform[1],
transform[2],
transform[0],
transform[4],
transform[5],
transform[3],
)
}
/// The determinant of the transform matrix
pub fn determinant(&self) -> f64 {
self.a * self.e - self.b * self.d
}
/// True if this transform is degenerate.
///
/// Which means that it will collapse a shape to an effective area
/// of zero. Degenerate transforms cannot be inverted.
pub fn is_degenerate(&self) -> bool {
self.determinant() == 0.0
}
pub fn invert(&self) -> Result<Self, Error> {
if self.is_degenerate() {
return Err(Error::TransformNotInvertible);
}
let idet = 1.0 / self.determinant();
let ra = self.e * idet;
let rb = -self.b * idet;
let rd = -self.d * idet;
let re = self.a * idet;
Ok(Self::new(
ra,
rb,
-self.c * ra - self.f * rb,
rd,
re,
-self.c * rd - self.f * re,
))
}
/// Apply the transformation to a coordinate
pub fn transform_coordinate(&self, coordinate: &Coord<f64>) -> Coord<f64> {
Coord {
x: coordinate.x.mul_add(self.a, coordinate.y * self.b) + self.c,
y: coordinate.x.mul_add(self.d, coordinate.y * self.e) + self.f,
}
}
}
/// apply the transformation to a coordinate
impl Mul<&Coord<f64>> for &Transform {
type Output = Coord<f64>;
fn mul(self, rhs: &Coord<f64>) -> Self::Output {
self.transform_coordinate(rhs)
}
}
/// apply the transformation to a coordinate
impl Mul<Coord<f64>> for &Transform {
type Output = Coord<f64>;
fn mul(self, rhs: Coord<f64>) -> Self::Output {
self.transform_coordinate(&rhs)
}
}
/// apply the transformation to a rect
impl Mul<&Rect<f64>> for &Transform {
type Output = Rect<f64>;
fn mul(self, rhs: &Rect<f64>) -> Self::Output {
Rect::new(self * rhs.min(), self * rhs.max())
}
}
#[cfg(test)]
mod tests {
/*
$ gdalinfo data/r.tiff
Driver: GTiff/GeoTIFF
Files: data/r.tiff
Size is 2000, 2000
Coordinate System is:
GEOGCRS["WGS 84",
DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,
ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],
AXIS["geodetic longitude (Lon)",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4326]]
Data axis to CRS axis mapping: 2,1
Origin = (8.113770000000001,49.407919999999997)
Pixel Size = (0.001196505000000,-0.001215135000000)
Metadata:
AREA_OR_POINT=Area
Image Structure Metadata:
COMPRESSION=LZW
INTERLEAVE=BAND
Corner Coordinates:
Upper Left ( 8.1137700, 49.4079200) ( 8d 6'49.57"E, 49d24'28.51"N)
Lower Left ( 8.1137700, 46.9776500) ( 8d 6'49.57"E, 46d58'39.54"N)
Upper Right ( 10.5067800, 49.4079200) ( 10d30'24.41"E, 49d24'28.51"N)
Lower Right ( 10.5067800, 46.9776500) ( 10d30'24.41"E, 46d58'39.54"N)
Center ( 9.3102750, 48.1927850) ( 9d18'36.99"E, 48d11'34.03"N)
Band 1 Block=2000x4 Type=Byte, ColorInterp=Gray
NoData Value=0
*/
use approx::assert_relative_eq;
use geo_types::Coord;
use crate::transform::Transform;
fn r_tiff_test_helper(gt: &Transform) {
// upper left pixel
let px_ul = Coord { x: 0., y: 0. };
let coord_ul = gt * px_ul;
assert_relative_eq!(coord_ul.x, 8.11377);
assert_relative_eq!(coord_ul.y, 49.40792);
let gt_inv = gt.invert().unwrap();
let px_ul_back = >_inv * coord_ul;
assert_relative_eq!(px_ul_back.x, 0.0);
assert_relative_eq!(px_ul_back.y, 0.0);
}
#[test]
fn test_r_tiff_from_gdal() {
/*
Python 3.8.5 (default, Jul 28 2020, 12:59:40)
[GCC 9.3.0] on linux
>>> from osgeo import gdal
>>> ds = gdal.Open("data/r.tiff")
>>> ds.GetGeoTransform()
(8.11377, 0.0011965049999999992, 0.0, 49.40792, 0.0, -0.001215135)
*/
let gt = Transform::from_gdal(&[
8.11377,
0.0011965049999999992,
0.0,
49.40792,
0.0,
-0.001215135,
]);
r_tiff_test_helper(>);
}
#[test]
fn test_r_tiff_from_rasterio() {
/*
Python 3.8.5 (default, Jul 28 2020, 12:59:40)
[GCC 9.3.0] on linux
>>> import rasterio
>>> ds = rasterio.open("data/r.tiff")
>>> ds.transform
Affine(0.0011965049999999992, 0.0, 8.11377,
0.0, -0.001215135, 49.40792)
*/
let gt = Transform::from_rasterio(&[
0.0011965049999999992,
0.0,
8.11377,
0.0,
-0.001215135,
49.40792,
]);
r_tiff_test_helper(>);
}
}