1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
use crate::dynamics::{BallJoint, IntegrationParameters, RigidBody};
#[cfg(feature = "dim2")]
use crate::math::SdpMatrix;
use crate::math::{AngularInertia, Isometry, Point, Real, Rotation};
use crate::utils::{WAngularInertia, WCross, WCrossMatrix};
#[derive(Debug)]
pub(crate) struct BallPositionConstraint {
position1: usize,
position2: usize,
local_com1: Point<Real>,
local_com2: Point<Real>,
im1: Real,
im2: Real,
ii1: AngularInertia<Real>,
ii2: AngularInertia<Real>,
local_anchor1: Point<Real>,
local_anchor2: Point<Real>,
}
impl BallPositionConstraint {
pub fn from_params(rb1: &RigidBody, rb2: &RigidBody, cparams: &BallJoint) -> Self {
Self {
local_com1: rb1.mass_properties.local_com,
local_com2: rb2.mass_properties.local_com,
im1: rb1.effective_inv_mass,
im2: rb2.effective_inv_mass,
ii1: rb1.effective_world_inv_inertia_sqrt.squared(),
ii2: rb2.effective_world_inv_inertia_sqrt.squared(),
local_anchor1: cparams.local_anchor1,
local_anchor2: cparams.local_anchor2,
position1: rb1.active_set_offset,
position2: rb2.active_set_offset,
}
}
pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry<Real>]) {
let mut position1 = positions[self.position1 as usize];
let mut position2 = positions[self.position2 as usize];
let anchor1 = position1 * self.local_anchor1;
let anchor2 = position2 * self.local_anchor2;
let com1 = position1 * self.local_com1;
let com2 = position2 * self.local_com2;
let err = anchor1 - anchor2;
let centered_anchor1 = anchor1 - com1;
let centered_anchor2 = anchor2 - com2;
let cmat1 = centered_anchor1.gcross_matrix();
let cmat2 = centered_anchor2.gcross_matrix();
#[cfg(feature = "dim3")]
let lhs = self.ii1.quadform(&cmat1).add_diagonal(self.im1)
+ self.ii2.quadform(&cmat2).add_diagonal(self.im2);
#[cfg(feature = "dim2")]
let lhs = {
let m11 =
self.im1 + self.im2 + cmat1.x * cmat1.x * self.ii1 + cmat2.x * cmat2.x * self.ii2;
let m12 = cmat1.x * cmat1.y * self.ii1 + cmat2.x * cmat2.y * self.ii2;
let m22 =
self.im1 + self.im2 + cmat1.y * cmat1.y * self.ii1 + cmat2.y * cmat2.y * self.ii2;
SdpMatrix::new(m11, m12, m22)
};
let inv_lhs = lhs.inverse_unchecked();
let impulse = inv_lhs * -(err * params.joint_erp);
position1.translation.vector += self.im1 * impulse;
position2.translation.vector -= self.im2 * impulse;
let angle1 = self.ii1.transform_vector(centered_anchor1.gcross(impulse));
let angle2 = self.ii2.transform_vector(centered_anchor2.gcross(-impulse));
position1.rotation = Rotation::new(angle1) * position1.rotation;
position2.rotation = Rotation::new(angle2) * position2.rotation;
positions[self.position1 as usize] = position1;
positions[self.position2 as usize] = position2;
}
}
#[derive(Debug)]
pub(crate) struct BallPositionGroundConstraint {
position2: usize,
anchor1: Point<Real>,
im2: Real,
ii2: AngularInertia<Real>,
local_anchor2: Point<Real>,
local_com2: Point<Real>,
}
impl BallPositionGroundConstraint {
pub fn from_params(
rb1: &RigidBody,
rb2: &RigidBody,
cparams: &BallJoint,
flipped: bool,
) -> Self {
if flipped {
Self {
anchor1: rb1.predicted_position * cparams.local_anchor2,
im2: rb2.effective_inv_mass,
ii2: rb2.effective_world_inv_inertia_sqrt.squared(),
local_anchor2: cparams.local_anchor1,
position2: rb2.active_set_offset,
local_com2: rb2.mass_properties.local_com,
}
} else {
Self {
anchor1: rb1.predicted_position * cparams.local_anchor1,
im2: rb2.effective_inv_mass,
ii2: rb2.effective_world_inv_inertia_sqrt.squared(),
local_anchor2: cparams.local_anchor2,
position2: rb2.active_set_offset,
local_com2: rb2.mass_properties.local_com,
}
}
}
pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry<Real>]) {
let mut position2 = positions[self.position2 as usize];
let anchor2 = position2 * self.local_anchor2;
let com2 = position2 * self.local_com2;
let err = self.anchor1 - anchor2;
let centered_anchor2 = anchor2 - com2;
let cmat2 = centered_anchor2.gcross_matrix();
#[cfg(feature = "dim3")]
let lhs = self.ii2.quadform(&cmat2).add_diagonal(self.im2);
#[cfg(feature = "dim2")]
let lhs = {
let m11 = self.im2 + cmat2.x * cmat2.x * self.ii2;
let m12 = cmat2.x * cmat2.y * self.ii2;
let m22 = self.im2 + cmat2.y * cmat2.y * self.ii2;
SdpMatrix::new(m11, m12, m22)
};
let inv_lhs = lhs.inverse_unchecked();
let impulse = inv_lhs * -(err * params.joint_erp);
position2.translation.vector -= self.im2 * impulse;
let angle2 = self.ii2.transform_vector(centered_anchor2.gcross(-impulse));
position2.rotation = Rotation::new(angle2) * position2.rotation;
positions[self.position2 as usize] = position2;
}
}