1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
use std::sync::atomic::{AtomicUsize, Ordering};

use rayon::Scope;

use crate::dynamics::solver::{
    AnyJointVelocityConstraint, AnyVelocityConstraint, ParallelSolverConstraints,
};
use crate::dynamics::{
    IntegrationParameters, IslandManager, JointGraphEdge, JointIndex, MultibodyJointSet,
    RigidBodySet,
};
use crate::geometry::{ContactManifold, ContactManifoldIndex};
use na::DVector;

use super::{DeltaVel, ParallelInteractionGroups, ParallelVelocitySolver};

#[macro_export]
#[doc(hidden)]
macro_rules! concurrent_loop {
    (let batch_size = $batch_size: expr;
     for $elt: ident in $array: ident[$index_stream:expr,$index_count:expr] $f: expr) => {
        let max_index = $array.len();

        if max_index > 0 {
            loop {
                let start_index = $index_stream.fetch_add($batch_size, Ordering::SeqCst);
                if start_index > max_index {
                    break;
                }

                let end_index = (start_index + $batch_size).min(max_index);
                for $elt in &$array[start_index..end_index] {
                    $f
                }

                $index_count.fetch_add(end_index - start_index, Ordering::SeqCst);
            }
        }
    };

    (let batch_size = $batch_size: expr;
     for $elt: ident in $array: ident[$index_stream:expr] $f: expr) => {
        let max_index = $array.len();

        if max_index > 0 {
            loop {
                let start_index = $index_stream.fetch_add($batch_size, Ordering::SeqCst);
                if start_index > max_index {
                    break;
                }

                let end_index = (start_index + $batch_size).min(max_index);
                for $elt in &$array[start_index..end_index] {
                    $f
                }
            }
        }
    };

    (let batch_size = $batch_size: expr;
        for $elt: ident in &mut $array: ident[$index_stream:expr] $f: expr) => {
        let max_index = $array.len();

        if max_index > 0 {
            loop {
                let start_index = $index_stream.fetch_add($batch_size, Ordering::SeqCst);
                if start_index > max_index {
                    break;
                }

                let end_index = (start_index + $batch_size).min(max_index);
                for $elt in &mut $array[start_index..end_index] {
                    $f
                }
            }
        }
    };
}

pub(crate) struct ThreadContext {
    pub batch_size: usize,
    // Velocity solver.
    pub constraint_initialization_index: AtomicUsize,
    pub num_initialized_constraints: AtomicUsize,
    pub joint_constraint_initialization_index: AtomicUsize,
    pub num_initialized_joint_constraints: AtomicUsize,
    pub solve_interaction_index: AtomicUsize,
    pub num_solved_interactions: AtomicUsize,
    pub impulse_writeback_index: AtomicUsize,
    pub joint_writeback_index: AtomicUsize,
    pub impulse_rm_bias_index: AtomicUsize,
    pub joint_rm_bias_index: AtomicUsize,
    pub body_integration_pos_index: AtomicUsize,
    pub body_integration_vel_index: AtomicUsize,
    pub body_force_integration_index: AtomicUsize,
    pub num_force_integrated_bodies: AtomicUsize,
    pub num_integrated_pos_bodies: AtomicUsize,
    pub num_integrated_vel_bodies: AtomicUsize,
}

impl ThreadContext {
    pub fn new(batch_size: usize) -> Self {
        ThreadContext {
            batch_size, // TODO perhaps there is some optimal value we can compute depending on the island size?
            constraint_initialization_index: AtomicUsize::new(0),
            num_initialized_constraints: AtomicUsize::new(0),
            joint_constraint_initialization_index: AtomicUsize::new(0),
            num_initialized_joint_constraints: AtomicUsize::new(0),
            solve_interaction_index: AtomicUsize::new(0),
            num_solved_interactions: AtomicUsize::new(0),
            impulse_writeback_index: AtomicUsize::new(0),
            joint_writeback_index: AtomicUsize::new(0),
            impulse_rm_bias_index: AtomicUsize::new(0),
            joint_rm_bias_index: AtomicUsize::new(0),
            body_force_integration_index: AtomicUsize::new(0),
            num_force_integrated_bodies: AtomicUsize::new(0),
            body_integration_pos_index: AtomicUsize::new(0),
            body_integration_vel_index: AtomicUsize::new(0),
            num_integrated_pos_bodies: AtomicUsize::new(0),
            num_integrated_vel_bodies: AtomicUsize::new(0),
        }
    }

    pub fn lock_until_ge(val: &AtomicUsize, target: usize) {
        if target > 0 {
            //        let backoff = crossbeam::utils::Backoff::new();
            std::sync::atomic::fence(Ordering::SeqCst);
            while val.load(Ordering::Relaxed) < target {
                //  backoff.spin();
                // std::thread::yield_now();
            }
        }
    }
}

pub struct ParallelIslandSolver {
    velocity_solver: ParallelVelocitySolver,
    parallel_groups: ParallelInteractionGroups,
    parallel_joint_groups: ParallelInteractionGroups,
    parallel_contact_constraints: ParallelSolverConstraints<AnyVelocityConstraint>,
    parallel_joint_constraints: ParallelSolverConstraints<AnyJointVelocityConstraint>,
    thread: ThreadContext,
}

impl Default for ParallelIslandSolver {
    fn default() -> Self {
        Self::new()
    }
}

impl ParallelIslandSolver {
    pub fn new() -> Self {
        Self {
            velocity_solver: ParallelVelocitySolver::new(),
            parallel_groups: ParallelInteractionGroups::new(),
            parallel_joint_groups: ParallelInteractionGroups::new(),
            parallel_contact_constraints: ParallelSolverConstraints::new(),
            parallel_joint_constraints: ParallelSolverConstraints::new(),
            thread: ThreadContext::new(8),
        }
    }

    pub fn init_and_solve<'s>(
        &'s mut self,
        scope: &Scope<'s>,
        island_id: usize,
        islands: &'s IslandManager,
        params: &'s IntegrationParameters,
        bodies: &'s mut RigidBodySet,
        manifolds: &'s mut Vec<&'s mut ContactManifold>,
        manifold_indices: &'s [ContactManifoldIndex],
        impulse_joints: &'s mut Vec<JointGraphEdge>,
        joint_indices: &[JointIndex],
        multibodies: &mut MultibodyJointSet,
    ) {
        let num_threads = rayon::current_num_threads();
        let num_task_per_island = num_threads; // (num_threads / num_islands).max(1); // TODO: not sure this is the best value. Also, perhaps it is better to interleave tasks of each island?
        self.thread = ThreadContext::new(8); // TODO: could we compute some kind of optimal value here?

        // Interactions grouping.
        self.parallel_groups.group_interactions(
            island_id,
            islands,
            bodies,
            multibodies,
            manifolds,
            manifold_indices,
        );
        self.parallel_joint_groups.group_interactions(
            island_id,
            islands,
            bodies,
            multibodies,
            impulse_joints,
            joint_indices,
        );

        let mut contact_j_id = 0;
        self.parallel_contact_constraints.init_constraint_groups(
            island_id,
            islands,
            bodies,
            multibodies,
            manifolds,
            &self.parallel_groups,
            &mut contact_j_id,
        );
        let mut joint_j_id = 0;
        self.parallel_joint_constraints.init_constraint_groups(
            island_id,
            islands,
            bodies,
            multibodies,
            impulse_joints,
            &self.parallel_joint_groups,
            &mut joint_j_id,
        );

        if self.parallel_contact_constraints.generic_jacobians.len() < contact_j_id {
            self.parallel_contact_constraints.generic_jacobians = DVector::zeros(contact_j_id);
        } else {
            self.parallel_contact_constraints
                .generic_jacobians
                .fill(0.0);
        }

        if self.parallel_joint_constraints.generic_jacobians.len() < joint_j_id {
            self.parallel_joint_constraints.generic_jacobians = DVector::zeros(joint_j_id);
        } else {
            self.parallel_joint_constraints.generic_jacobians.fill(0.0);
        }

        // Init solver ids for multibodies.
        {
            let mut solver_id = 0;
            let island_range = islands.active_island_range(island_id);
            let active_bodies = &islands.active_dynamic_set[island_range];
            for handle in active_bodies {
                if let Some(link) = multibodies.rigid_body_link(*handle).copied() {
                    let multibody = multibodies
                        .get_multibody_mut_internal(link.multibody)
                        .unwrap();
                    if link.id == 0 || link.id == 1 && !multibody.root_is_dynamic {
                        multibody.solver_id = solver_id;
                        solver_id += multibody.ndofs();
                    }
                }
            }

            if self.velocity_solver.generic_mj_lambdas.len() < solver_id {
                self.velocity_solver.generic_mj_lambdas = DVector::zeros(solver_id);
            } else {
                self.velocity_solver.generic_mj_lambdas.fill(0.0);
            }

            self.velocity_solver.mj_lambdas.clear();
            self.velocity_solver
                .mj_lambdas
                .resize(islands.active_island(island_id).len(), DeltaVel::zero());
        }

        for _ in 0..num_task_per_island {
            // We use AtomicPtr because it is Send+Sync while *mut is not.
            // See https://internals.rust-lang.org/t/shouldnt-pointers-be-send-sync-or/8818
            let thread = &self.thread;
            let velocity_solver =
                std::sync::atomic::AtomicPtr::new(&mut self.velocity_solver as *mut _);
            let bodies = std::sync::atomic::AtomicPtr::new(bodies as *mut _);
            let multibodies = std::sync::atomic::AtomicPtr::new(multibodies as *mut _);
            let manifolds = std::sync::atomic::AtomicPtr::new(manifolds as *mut _);
            let impulse_joints = std::sync::atomic::AtomicPtr::new(impulse_joints as *mut _);
            let parallel_contact_constraints =
                std::sync::atomic::AtomicPtr::new(&mut self.parallel_contact_constraints as *mut _);
            let parallel_joint_constraints =
                std::sync::atomic::AtomicPtr::new(&mut self.parallel_joint_constraints as *mut _);

            scope.spawn(move |_| {
                // Transmute *mut -> &mut
                let velocity_solver: &mut ParallelVelocitySolver =
                    unsafe { std::mem::transmute(velocity_solver.load(Ordering::Relaxed)) };
                let bodies: &mut RigidBodySet =
                    unsafe { std::mem::transmute(bodies.load(Ordering::Relaxed)) };
                let multibodies: &mut MultibodyJointSet =
                    unsafe { std::mem::transmute(multibodies.load(Ordering::Relaxed)) };
                let manifolds: &mut Vec<&mut ContactManifold> =
                    unsafe { std::mem::transmute(manifolds.load(Ordering::Relaxed)) };
                let impulse_joints: &mut Vec<JointGraphEdge> =
                    unsafe { std::mem::transmute(impulse_joints.load(Ordering::Relaxed)) };
                let parallel_contact_constraints: &mut ParallelSolverConstraints<AnyVelocityConstraint> = unsafe {
                    std::mem::transmute(parallel_contact_constraints.load(Ordering::Relaxed))
                };
                let parallel_joint_constraints: &mut ParallelSolverConstraints<AnyJointVelocityConstraint> = unsafe {
                    std::mem::transmute(parallel_joint_constraints.load(Ordering::Relaxed))
                };

                enable_flush_to_zero!(); // Ensure this is enabled on each thread.

                // Initialize `mj_lambdas` (per-body velocity deltas) with external accelerations (gravity etc):
                {
                    let island_range = islands.active_island_range(island_id);
                    let active_bodies = &islands.active_dynamic_set[island_range];

                    concurrent_loop! {
                        let batch_size = thread.batch_size;
                        for handle in active_bodies[thread.body_force_integration_index, thread.num_force_integrated_bodies] {
                            if let Some(link) = multibodies.rigid_body_link(*handle).copied() {
                                let multibody = multibodies
                                    .get_multibody_mut_internal(link.multibody)
                                    .unwrap();

                                if link.id == 0 || link.id == 1 && !multibody.root_is_dynamic {
                                    let mut mj_lambdas = velocity_solver
                                        .generic_mj_lambdas
                                        .rows_mut(multibody.solver_id, multibody.ndofs());
                                    mj_lambdas.axpy(params.dt, &multibody.accelerations, 0.0);
                                }
                            } else {
                                let rb = &bodies[*handle];
                                let dvel = &mut velocity_solver.mj_lambdas[rb.ids.active_set_offset];

                                // NOTE: `dvel.angular` is actually storing angular velocity delta multiplied
                                //       by the square root of the inertia tensor:
                                dvel.angular += rb.mprops.effective_world_inv_inertia_sqrt * rb.forces.torque * params.dt;
                                dvel.linear += rb.forces.force.component_mul(&rb.mprops.effective_inv_mass) * params.dt;
                            }
                        }
                    }

                    // We need to wait for every body to be force-integrated because their
                    // angular and linear velocities are needed by the constraints initialization.
                    ThreadContext::lock_until_ge(&thread.num_force_integrated_bodies, active_bodies.len());
                }


                parallel_contact_constraints.fill_constraints(&thread, params, bodies, multibodies, manifolds);
                parallel_joint_constraints.fill_constraints(&thread, params, bodies, multibodies, impulse_joints);
                ThreadContext::lock_until_ge(
                    &thread.num_initialized_constraints,
                    parallel_contact_constraints.constraint_descs.len(),
                );
                ThreadContext::lock_until_ge(
                    &thread.num_initialized_joint_constraints,
                    parallel_joint_constraints.constraint_descs.len(),
                );

                velocity_solver.solve(
                        &thread,
                        params,
                        island_id,
                        islands,
                        bodies,
                        multibodies,
                        manifolds,
                        impulse_joints,
                        parallel_contact_constraints,
                        parallel_joint_constraints,
                );
            })
        }
    }
}